10 research outputs found

    Bulk and surface rheology of Aculyn™ 22 and Aculyn™ 33 polymeric solutions and kinetics of foam drainage

    Get PDF
    This paper was accepted for publication in the journal Colloids and Surfaces A: Physicochemical and Engineering Aspects and the definitive published version is available at http://dx.doi.org/10.1016/j.colsurfa.2013.05.072Experimental investigations of both bulk and surface rheology of solutions of commercially available polymers AculynTM 22 and AculynTM 33 in presence of sodium chloride are performed in a wide range of the polymer and salt concentrations. It is shown that the bulk viscosity and the surface viscoelastic modulus of solutions of both polymers increases with the increase of polymer concentration and the decrease of the salt concentration. Solutions of both polymers demonstrate very good foamability and form stable foams. Foam drainage is governed mainly by the bulk viscosity when the latter is in the range of 100-500 mPa·s

    Interaction of foam with a porous medium: Theory and calculations

    No full text
    Closed accessA new theory of foam drainage in the presence of a porous support was introduced and accordingly, a mathematical model which combines the foam drainage equation with the equation describing imbibition into the porous substrate was developed. Proposed dimensionless equations were solved using finite element method. Boundary conditions were zero liquid flux on the top of the foam and continuity of flux on foam/substrate interface. It was found that the kinetics of foam drainage depends on three dimensionless numbers. The result indicated that there are two possible scenarios for the interaction of foam with a porous substrate: (i) a rapid imbibition, the liquid volume fraction at the bottom of the foam is a decreasing function of time. In this regime the imbibition into the porous substrate dominates and it is faster as compared with the foam drainage; (ii) a slow imbibition, the liquid volume fraction at the interface experiences a peak point and imbibition into the porous substrate is slower for some time as compared with the foam drainage

    Nebulization of Poractant alfa via a vibrating membrane nebulizer in spontaneously breathing preterm lambs with binasal continuous positive pressure ventilation

    No full text
    BACKGROUND: Surfactant replacement therapy is the gold standard treatment of neonatal respiratory distress (RDS). Nebulization is a noninvasive mode of surfactant administration. We administered Poractant alfa (Curosurf) via a vibrating perforated membrane nebulizer (eFlow Neonatal Nebulizer) to spontaneously breathing preterm lambs during binasal continuous positive pressure ventilation (CPAP). METHODS: Sixteen preterm lambs were operatively delivered at a gestational age of 133 ± 1 d (term ~150 d), and connected to CPAP applied via customized nasal prongs. Nebulization was performed (i) with saline or (ii) with surfactant for 3 h in humidified or (iii) nonhumidified air, and with surfactant (iv) for 60 min or (v) for 30 min. We measured arterial oxygenation, lung gas volumes and surfactant pool size and deposition. RESULTS: Nebulization of surfactant in humidified air for 3 h improved oxygenation and lung function, and surfactant was preferentially distributed to the lower lung lobes. Shorter nebulization times and 3 h nebulization in dry air did not show these effects. Nebulized surfactant reached all lung lobes, however the increase of surfactant pool size missed statistical significance. CONCLUSION: Positive effects of surfactant nebulization to spontaneously breathing preterm lambs depend on treatment duration, surfactant dose, air humidity, and surfactant distribution within the lung

    Early postnatal, but not late, exposure to chemical ambient pollutant 1,2-naphthoquinone increases susceptibility to pulmonary allergic inflammation at adulthood

    No full text
    High diesel exhaust particle levels are associated with increased health effects; however, knowledge on the impact of its chemical contaminant 1,2-naphthoquinone (1,2-NQ) is limited. We investigated whether postnatal and adult exposures to 1,2-NQ influence allergic reaction and the roles of innate and adaptive immunity. Male neonate (6 days) and adult (56 days) C57Bl/6 mice were exposed to 1,2-NQ (100 nM; 15 min) for 3 days, and on day 59, they were sensitized and later challenged with ovalbumin (OVA). Airway hyper-responsiveness (AHR) and production of cytokines, immunoglobulin E (IgE) and leukotriene B-4 (LTB4) were measured in the airways. Postnatal exposure to 1,2-NQ activated dendritic cells in splenocytes by increasing expressing cell surface molecules (e.g., CD11c). Co-exposure to OVA effectively polarized T helper (Th) type 2 (Th2) by secreting Th2-mediated cytokines. Re-stimulation with unspecific stimuli (PMA and ionomycin) generated a mixed Th1 (CD4(+)/IFN-gamma(+)) and Th17 (CD4(+)/IL-17(+)) phenotype in comparison with the vehicle-matched group. Postnatal exposure to 1,2-NQ did not induce eosinophilia in the airways at adulthood, although it evoked neutrophilia and exacerbated OVA-induced eosinophilia, Th2 cytokines, IgE and LTB4 production without affecting AHR and mast cell degranulation. At adulthood, 1,2-NQ exposure evoked neutrophilia and increased Th1/Th2 cytokine levels, but failed to affect OVA-induced eosinophilia. In conclusion, postnatal exposure to 1,2-NQ increases the susceptibility to antigen-induced asthma. The mechanism appears to be dependent on increased expression of co-stimulatory molecules, which leads to cell presentation amplification, Th2 polarization and enhanced LTB4, humoral response and Th1/Th2 cytokines. These findings may be useful for future investigations on treatments focused on pulmonary illnesses observed in children living in heavy polluted areas.</p
    corecore