525 research outputs found
Partially-disordered photonic-crystal thin films for enhanced and robust photovoltaics
We present a general framework for the design of thin-film photovoltaics
based on a partially-disordered photonic crystal that has both enhanced
absorption for light trapping and reduced sensitivity to the angle and
polarization of incident radiation. The absorption characteristics of different
lattice structures are investigated as an initial periodic structure is
gradually perturbed. We find that an optimal amount of disorder controllably
introduced into a multi-lattice photonic crystal causes the characteristic
narrow-band, resonant peaks to be broadened resulting in a device with enhanced
and robust performance ideal for typical operating conditions of photovoltaic
applications.Comment: 5 pages, 4 figure
Fermi-surface topology and the effects of intrinsic disorder in a class of charge-transfer salts containing magnetic ions: β" — (BEDT — TTF)₄ [(H₃O)M(C₂O₄)₃]Υ (M = Ga, Cr, Fr; Υ = C₅H₅N)
We report high-field magnetotransport measurements on β" — (BEDT — TTF)₄ [(H₃O)M(C₂O₄)₃]Υ, where M =Ga, Cr and Fe and Υ = C₅H₅N. We observe similar Shubnikov–de Haas oscillations in all compounds, attributable to four quasi-two-dimensional Fermi-surface pockets, the largest of which corresponds to a cross-sectional area ≈ 8.5% of the Brillouin zone. The cross-sectional areas of the pockets are in agreement with the expectations for a compensated semimetal, and the corresponding effective masses are ∼mₑ, rather small compared to those of other BEDT-TTF salts. Apart from the case of the smallest Fermi-surface pocket, varying the M ion seems to have little effect on the overall Fermi-surface topology or on the effective masses. Despite the fact that all samples show quantum oscillations at low temperatures, indicative of Fermi liquid behavior, the sample and temperature dependence of the interlayer resistivity suggest that these systems are intrinsically inhomogeneous. It is thought that intrinsic tendency to disorder in the anions and/or the ethylene groups of the BEDT-TTF molecules leads to the coexistence of insulating and metallic states at low temperatures. A notional phase diagram is given for the general family of β" — (BEDT — TTF)₄ [(H₃O)M(C₂O₄)₃]Υ salts
Comparison of the Fermi-surface topologies of kappa-(BEDT-TTF)_2 Cu(NCS)_2 and its deuterated analogue
We have measured details of the quasi one-dimensional Fermi-surface sections
in the organic superconductor kappa-(BEDT-TTF)_2 Cu(NCS)_2 and its deuterated
analogue using angle-dependent millimetre-wave techniques. There are
significant differences in the corrugations of the Fermi surfaces in the
deuterated and undeuterated salts. We suggest that this is important in
understanding the inverse isotope effect, where the superconducting transition
temperature rises on deuteration. The data support models for superconductivity
which invoke electron-electron interactions depending on the topological
properties of the Fermi surface
Adaptive quantum state tomography improves accuracy quadratically
We introduce a simple protocol for adaptive quantum state tomography, which
reduces the worst-case infidelity between the estimate and the true state from
to . It uses a single adaptation step and just one
extra measurement setting. In a linear optical qubit experiment, we demonstrate
a full order of magnitude reduction in infidelity (from to ) for
a modest number of samples ().Comment: 8 pages, 7 figure
- …
