1,816 research outputs found
Relevant gluonic energy scale of spontaneous chiral symmetry breaking from lattice QCD
We analyze which momentum component of the gluon field induces spontaneous
chiral symmetry breaking in lattice QCD. After removing the high-momentum or
low-momentum component of the gluon field, we calculate the chiral condensate
and observe the roles of these momentum components. The chiral condensate is
found to be drastically reduced by removing the zero-momentum gluon. The
reduction is about 40% of the total in our calculation condition. The
nonzero-momentum infrared gluon also has a sizable contribution to the chiral
condensate. From the Banks-Casher relation, this result reflects the nontrivial
relation between the infrared gluon and the zero-mode quark
Zur Analyse der anfanglich beim Au-Al-Verbindungsbereich vorkommenden Storungen bein LSI-Bearbeitungsablauf(Materials, Metallurgy & Weldability)
Analysis of Structural Features of Hard-Facing Overlays Performed Using Prototype Selfshielded Flux Cored Wires(Materials, Metallurgy & Weldability)
Untersuchungen der SchweiBguteigenschaften in Abhängigkeiten vom Basizitätsgrad der 50kg/㎟ Grad agglomerierten UP-Schweißpulver(Materials, Metallurgy & Weldability)
Research on Characteristics of Filler Metal and Flux Influencing on the Toughness of a Carbon Steel Weld : Minor Elements and Alloying Elements Influencing on the Toughness of Weld(Materials, Metallurgy & Weldability)
Development and preliminary data on the use of a mobile app specifically designed to increase community awareness of invasive pneumococcal disease and its prevention
PublishedGiven the growing use and great potential of mobile apps, this project aimed to develop and implement a user-friendly app to increase laypeople's knowledge and awareness of invasive pneumococcal disease (IPD). Despite the heavy burden of IPD, the documented low awareness of IPD among both laypeople and healthcare professionals and far from optimal pneumococcal vaccination coverage, no app specifically targeting IPD has been developed so far. The app was designed to be maximally functional and conceived in accordance with user-centered design. Its content, layout and usability were discussed and formally tested during several workshops that involved the principal stakeholders, including experts in IPD and information technology and potential end-users. Following several workshops, it was decided that, in order to make the app more interactive, its core should be a personal “checker” of the risk of contracting IPD and a user-friendly risk-communication strategy. The checker was populated with risk factors identified through both Italian and international official guidelines. Formal evaluation of the app revealed its good readability and usability properties. A sister web site with the same content was created to achieve higher population exposure. Seven months after being launched in a price- and registration-free modality, the app, named “Pneumo Rischio,” averaged 20.9 new users/day and 1.3 sessions/user. The first in-field results suggest that “Pneumo Rischio” is a promising tool for increasing the population's awareness of IPD and its prevention through a user-friendly risk checker.The development of the app is a part of the project on increasing the population's awareness of invasive pneumococcal disease and has been supported by sponsorship from Pfizer S.r.l. The sponsor had no role in the app design and development. The authors thank Progetti di Impresa Srl for creating the app and website
Threshold electronic structure at the oxygen K edge of 3d transition metal oxides: a configuration interaction approach
It has been generally accepted that the threshold structure observed in the
oxygen K edge X-ray absorption spectrum in 3d transition metal oxides
represents the electronic structure of the 3d transition metal. There is,
however, no consensus about the correct description. We present an
interpretation, which includes both ground state hybridization and electron
correlation. It is based on a configuration interaction cluster calculation
using a MO6 cluster. The oxygen K edge spectrum is calculated by annihilating a
ligand hole in the ground state and is compared to calculations representing
inverse photoemission experiments in which a 3d transition metal electron is
added. Clear differences are observed related to the amount of ligand hole
created in the ground state. Two "rules" connected to this are discussed.
Comparison with experimental data of some early transition metal compounds is
made and shows that this simple cluster approach explains the experimental
features quite well.Comment: 10 pages, submitted to Phys. Rev. B, tried to make a better PS file
Do bilinguals have different concepts? The case of shape and material in Japanese L2 users of English
An experiment investigated whether Japanese speakers’ categorisation of objects and substances as shape or material is influenced by acquiring English, based on Imai and Gentner (1997). Subjects were presented with an item such as a cork pyramid and asked to choose between two other items that matched it for shape (plastic pyramid) or for material (piece of cork). The hypotheses were that for simple objects the number of shape-based categorisations would increase according to experience of English and that the preference for shape and material-based categorisations of Japanese speakers of English would differ from mono¬lingual speakers of both languages. Subjects were 18 adult Japanese users of English who had lived in English-speaking countries between 6 months and 3 years (short-stay group), and 18 who had lived in English-speaking countries for 3 years or more (long-stay group). Both groups achieved above criterion on an English vocabulary test. Results were: both groups preferred material responses for simple objects and substances but not for complex objects, in line with Japanese mono¬linguals, but the long-stay group showed more shape preference than the short-stay group and also were less different from Americans. These effects of acquiring a second language on categorisation have implications for conceptual representation and methodology
Dynamical Gauge Symmetry Breaking in Extension of the Standard Model
We study the extension of the Standard model with a
strong U(1) coupling. We argue that current experiments limit this coupling to
be relatively large. The model is dynamically broken to the Standard model at the scale of a few TeV with all the extra gauge bosons
and the exotic quarks acquiring masses much larger than the scale of
electroweak symmetry breaking. Furthermore we find that the model leads to
large dynamical mass of the top quark and hence also breaks the electroweak
gauge symmetry. It therefore leads to large dynamical effects within the
Standard model and can partially replace the Higgs interactions.Comment: 4 pages, revtex, no figures; revised version predicting realistic
mass spectru
- …
