21 research outputs found

    Rare mutations predisposing to familial adenomatous polyposis in Greek FAP patients

    Get PDF
    BACKGROUND: Familial Adenomatous Polyposis (FAP) is caused by germline mutations in the APC (Adenomatous Polyposis Coli) gene. The vast majority of APC mutations are point mutations or small insertions / deletions which lead to truncated protein products. Splicing mutations or gross genomic rearrangements are less common inactivating events of the APC gene. METHODS: In the current study genomic DNA or RNA from ten unrelated FAP suspected patients was examined for germline mutations in the APC gene. Family history and phenotype were used in order to select the patients. Methods used for testing were dHPLC (denaturing High Performance Liquid Chromatography), sequencing, MLPA (Multiplex Ligation – dependent Probe Amplification), Karyotyping, FISH (Fluorescence In Situ Hybridization) and RT-PCR (Reverse Transcription – Polymerase Chain Reaction). RESULTS: A 250 Kbp deletion in the APC gene starting from intron 5 and extending beyond exon 15 was identified in one patient. A substitution of the +5 conserved nucleotide at the splice donor site of intron 9 in the APC gene was shown to produce frameshift and inefficient exon skipping in a second patient. Four frameshift mutations (1577insT, 1973delAG, 3180delAAAA, 3212delA) and a nonsense mutation (C1690T) were identified in the rest of the patients. CONCLUSION: Screening for APC mutations in FAP patients should include testing for splicing defects and gross genomic alterations

    hMSH2 is the most commonly mutated MMR gene in a cohort of Greek HNPCC patients

    Get PDF
    Germline mutations in genes encoding proteins involved in DNA mismatch repair are responsible for the autosomal dominantly inherited cancer predisposition syndrome hereditary nonpolyposis colorectal cancer (HNPCC). We describe here analysis of hMLH1 and hMSH2 in nine Greek families referred to our centre for HNPCC. A unique disease-causing mutation has been identified in seven out of nine (78%) families. The types of mutations identified are nonsense (five out of seven) (hMLH1: E557X, R226X; hMSH2: Q158X, R359X and R711X), a 2 bp deletion (hMSH2 1704_1705delAG) and a 2.2 kb Alu-mediated deletion encompassing exon 3 of the hMSH2 gene. The majority of mutations identified in this cohort are found in hMSH2 (77.7%). Furthermore, four of the mutations identified are novel. Finally, a number of novel benign variations were observed in both genes. This is the first report of HNPCC analysis in the Greek population, further underscoring the differences observed in the various geographic populations

    Screening of the DNA mismatch repair genes MLH1, MSH2 and MSH6 in a Greek cohort of Lynch syndrome suspected families

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Germline mutations in the DNA mismatch repair genes predispose to Lynch syndrome, thus conferring a high relative risk of colorectal and endometrial cancer. The <it>MLH1, MSH2 </it>and <it>MSH6 </it>mutational spectrum reported so far involves minor alterations scattered throughout their coding regions as well as large genomic rearrangements. Therefore, a combination of complete sequencing and a specialized technique for the detection of genomic rearrangements should be conducted during a proper DNA-testing procedure. Our main goal was to successfully identify Lynch syndrome families and determine the spectrum of <it>MLH1</it>, <it>MSH2 </it>and <it>MSH6 </it>mutations in Greek Lynch families in order to develop an efficient screening protocol for the Greek colorectal cancer patients' cohort.</p> <p>Methods</p> <p>Forty-two samples from twenty-four families, out of which twenty two of Greek, one of Cypriot and one of Serbian origin, were screened for the presence of germline mutations in the major mismatch repair genes through direct sequencing and MLPA. Families were selected upon Amsterdam criteria or revised Bethesda guidelines.</p> <p>Results</p> <p>Ten deleterious alterations were detected in twelve out of the twenty-four families subjected to genetic testing, thus our detection rate is 50%. Four of the pathogenic point mutations, namely two nonsense, one missense and one splice site change, are novel, whereas the detected genomic deletion encompassing exon 6 of the <it>MLH1 </it>gene has been described repeatedly in the LOVD database. The average age of onset for the development of both colorectal and endometrial cancer among mutation positive families is 43.2 years.</p> <p>Conclusion</p> <p>The mutational spectrum of the MMR genes investigated as it has been shaped by our analysis is quite heterogeneous without any strong indication for the presence of a founder effect.</p

    Different intrafamilial clinical presentation of FMF mutation carriers

    No full text
    Familial Mediterranean fever (FMF) is a heterogeneous disorder; at present, it is diagnosed using only genetic methods. In the current study, we performed molecular analysis in two families presenting with FMF. In the first family, we report two brothers with a common genotype (M694V/V726A) but with different clinical presentation. In the second family, we identified the M694V and K695R mutations in a presymptomatic carrier. © Copyright 2008, Mary Ann Liebert, Inc

    Heterogeneous molecular mechanisms underlie attenuated familial adenomatous polyposis

    No full text
    Purpose: Familial adenomatous polyposis is a phenotypically heterogeneous disease predisposing to colorectal cancer. It is dominantly transmitted, when associated with the APC gene, and recessively inherited, when associated with MUTYH gene. We searched for APC and MUTYH germline alterations in Italian and Greek patients with attenuated polyposis, a phenotypic variant whose genetic cause remains unknown in many cases. Methods: We studied 26 unrelated patients (and 16 relatives) with multiple colorectal adenomas (3–100, by endoscopic analysis) that had screened APC mutation-negative by protein truncation test. We searched for APC rearrangements by multiplex ligation-dependent probe amplification and for MUTYH mutations by sequencing. We performed a screening of five MUTYH recurrent pathogenic mutations in 501 Italian and 144 Greek controls. Results: One patient proved to carry an APC whole-gene deletion; 4 of 25 (16%) patients showed biallelic and 3 of 25 (12%) monoallelic MUTYH mutations. In the three heterozygous subjects no pathogenetic variants were found in OGG1, MTH1, APE1, MSH2, and MSH6 genes. Frequency assessment of MUTYH mutations in healthy subjects showed that only Y165C and G382D reach a subpolymorphic frequency. Conclusion: Attenuated polyposis patients without “conventional” APC mutations are genetically heterogeneous, and the phenotype is not directly related to the germline defect. Therefore, the families' appropriate management requires an accurate genetic and clinical investigation

    Analysis of hereditary cancer syndromes by using a panel of genes: novel and multiple pathogenic mutations

    No full text
    BackgroundHereditary cancer predisposition syndromes are responsible for approximately 5-10% of all diagnosed cancer cases. In the past, single-gene analysis of specific high risk genes was used for the determination of the genetic cause of cancer heritability in certain families. The application of Next Generation Sequencing (NGS) technology has facilitated multigene panel analysis and is widely used in clinical practice, for the identification of individuals with cancer predisposing gene variants. The purpose of this study was to investigate the extent and nature of variants in genes implicated in hereditary cancer predisposition in individuals referred for testing in our laboratory.MethodsIn total, 1197 individuals from Greece, Romania and Turkey were referred to our laboratory for genetic testing in the past 4years. The majority of referrals included individuals with personal of family history of breast and/or ovarian cancer. The analysis of genes involved in hereditary cancer predisposition was performed using a NGS approach. Genomic DNA was enriched for targeted regions of 36 genes and sequencing was carried out using the Illumina NGS technology. The presence of large genomic rearrangements (LGRs) was investigated by computational analysis and Multiplex Ligation-dependent Probe Amplification (MLPA).ResultsA pathogenic variant was identified in 264 of 1197 individuals (22.1%) analyzed while a variant of uncertain significance (VUS) was identified in 34.8% of cases. Clinically significant variants were identified in 29 of the 36 genes analyzed. Concerning the mutation distribution among individuals with positive findings, 43.6% were located in the BRCA1/2 genes whereas 21.6, 19.9, and 15.0% in other high, moderate and low risk genes respectively. Notably, 25 of the 264 positive individuals (9.5%) carried clinically significant variants in two different genes and 6.1% had a LGR.ConclusionsIn our cohort, analysis of all the genes in the panel allowed the identification of 4.3 and 8.1% additional pathogenic variants in other high or moderate/low risk genes, respectively, enabling personalized management decisions for these individuals and supporting the clinical significance of multigene panel analysis in hereditary cancer predisposition
    corecore