47 research outputs found

    The PREDICT study uncovers three clinical courses of acutely decompensated cirrhosis that have distinct pathophysiology

    Get PDF
    Background & Aims: Acute decompensation (AD) of cirrhosis is defined as the acute development of ascites, gastrointestinal hemorrhage, hepatic encephalopathy, infection or any combination thereof, requiring hospitalization. The presence of organ failure(s) in patients with AD defines acute-on-chronic liver failure (ACLF). The PREDICT study is a European, prospective, observational study, designed to characterize the clinical course of AD and to identify predictors of ACLF. Methods: A total of 1,071 patients with AD were enrolled. We collected detailed pre-specified information on the 3-month period prior to enrollment, and clinical and laboratory data at enrollment. Patients were then closely followed up for 3 months. Outcomes (liver transplantation and death) at 1 year were also recorded. Results: Three groups of patients were identified. Pre-ACLF patients (n = 218) developed ACLF and had 3-month and 1-year mortality rates of 53.7% and 67.4%, respectively. Unstable decompensated cirrhosis (UDC) patients (n = 233) required ≥1 readmission but did not develop ACLF and had mortality rates of 21.0% and 35.6%, respectively. Stable decompensated cirrhosis (SDC) patients (n = 620) were not readmitted, did not develop ACLF and had a 1-year mortality rate of only 9.5%. The 3 groups differed significantly regarding the grade and course of systemic inflammation (high-grade at enrollment with aggravation during follow-up in pre-ACLF; low-grade at enrollment with subsequent steady-course in UDC; and low-grade at enrollment with subsequent improvement in SDC) and the prevalence of surrogates of severe portal hypertension throughout the study (high in UDC vs. low in pre-ACLF and SDC). Conclusions: Acute decompensation without ACLF is a heterogeneous condition with 3 different clinical courses and 2 major pathophysiological mechanisms: systemic inflammation and portal hypertension. Predicting the development of ACLF remains a major future challenge. ClinicalTrials.gov number: NCT03056612. Lay summary: Herein, we describe, for the first time, 3 different clinical courses of acute decompensation (AD) of cirrhosis after hospital admission. The first clinical course includes patients who develop acute-on-chronic liver failure (ACLF) and have a high short-term risk of death – termed pre-ACLF. The second clinical course (unstable decompensated cirrhosis) includes patients requiring frequent hospitalizations unrelated to ACLF and is associated with a lower mortality risk than pre-ACLF. Finally, the third clinical course (stable decompensated cirrhosis), includes two-thirds of all patients admitted to hospital with AD – patients in this group rarely require hospital admission and have a much lower 1-year mortality risk

    Reduced neural baroreflex sensitivity is related to enhanced endothelial function in patients with end-stage liver disease

    No full text
    Objectives: Reduced baroreflex sensitivity (BRS) is a frequent complication in end-stage liver disease, but the underlying mechanism is unknown. We investigated the mechanical and neural components of BRS. Increased nitric oxide (NO) production has been reported in end-stage liver failure. Based on earlier experiments, we hypothesised that enhanced endothelial function might affect baroreflex function. Therefore, we explored the relation between endothelial function and the components of BRS.Materials and methods: We enrolled 24 patients and 23 controls. BRS was determined by the spontaneous sequence method. Mechanical component was characterised by the distensibility coefficient (DC) of common carotid artery. Neural component was estimated as the ratio of integrated BRS and DC. Endothelial function was quantified by flow-mediated dilation (FMD) of the brachial artery.Results: Integrated BRS was reduced in patients [7.00 (5.80-9.25) vs. 11.1 (8.50-14.80) ms/mmHg]. The mechanical component was not different in the two groups, whereas neural component showed significant reduction in patients (3.541.20 vs. 4.48 +/- 1.43ms/10(-3)). FMD was higher in patients (9.81 +/- 3.77 vs. 5.59 +/- 1.36%). FMD and neural BRS were directly related in controls (r=0.62), but inversely related in patients (r=-0.49).Conclusions: Baroreflex impairment in end-stage liver disease might be explained by deterioration of the neural component, while the mechanical component appears to be preserved. Endothelial NO may enhance BRS in health; however, central endothelial overproduction of NO likely contributes to the reduction of neural component of BRS in patients awaiting liver transplantation

    An Updated View of the Importance of Vesicular Trafficking and Transport and Their Role in Immune-Mediated Diseases: Potential Therapeutic Interventions

    No full text
    Cellular trafficking is the set of processes of distributing different macromolecules by the cell. This process is highly regulated in cells, involving a system of organelles (endomembranous system), among which are a great variety of vesicles that can be secreted from the cell, giving rise to different types of extracellular vesicles (EVs) that can be captured by other cells to modulate their function. The cells of the immune system are especially sensitive to this cellular traffic, producing and releasing different classes of EVs, especially in disease states. There is growing interest in this field due to the therapeutic and translational possibilities it offers. Different ways of taking advantage of the understanding of cell trafficking and EVs are being investigated, and their use as biomarkers or therapeutic targets is being investigated. The objective of this review is to collect the latest results and knowledge in this area with a specific focus on immune-mediated diseases. Although some promising results have been obtained, further knowledge is still needed, at both the basic and translational levels, to understand and modulate cellular traffic and EVs for better clinical management of these patients

    Implication of ERBB2 as a Predictive Tool for Survival in Patients with Pancreatic Cancer in Histological Studies

    No full text
    Pancreatic cancer will be positioned by the year 2030 as the second cause of oncological death after lung cancer. The pathophysiology of the most common variety, which involves the adenocarcinoma of the pancreas, represents one of the main challenges for current oncology to explain its tumorigenesis and create a targeted treatment. The tumor microenvironment, metastatic capacity, and lack of early diagnosis lead patients to present advanced stages at the time of diagnosis. Despite numerous efforts, little progress has been made in clinical outcomes and with respect to the improved survival of these patients. For this reason, in recent years, numerous diagnostic tests, treatments, and possible approaches in the fields of radiotherapy, chemotherapy, immunotherapy, and surgery have been developed to find a combination of methods that improves life expectancy in patients diagnosed with this disease. On the other hand, the scientific community has made numerous advances in the molecular bases of pancreatic cancer since several oncogenetic pathways have been described and the markers expressed by the tumor have proven to be useful in the prognosis of pancreatic adenocarcinoma. These molecular alterations allow the study of possible therapeutic targets that improve the prognosis of these patients, but even numerous tumor cell-individual interactions must be explained to understand the underlying pathophysiology causing the high mortality. Therefore, the purpose of our study is to examine the expression of markers such as EGFR, Cyclin D1, andCDK4 in order to find a relationship with the possible long-term prognostic factors of patients affected by pancreatic ductal adenocarcinoma. Our results show that there is a prognostic role for ErbB2, EGFR, beta catenin, cyclin D1, and CDK4. Of these, we highlight the clinical importance of ErbB2 in the survival rates of patients who overexpress this component

    Implication of ERBB2 as a Predictive Tool for Survival in Patients with Pancreatic Cancer in Histological Studies

    No full text
    Pancreatic cancer will be positioned by the year 2030 as the second cause of oncological death after lung cancer. The pathophysiology of the most common variety, which involves the adenocarcinoma of the pancreas, represents one of the main challenges for current oncology to explain its tumorigenesis and create a targeted treatment. The tumor microenvironment, metastatic capacity, and lack of early diagnosis lead patients to present advanced stages at the time of diagnosis. Despite numerous efforts, little progress has been made in clinical outcomes and with respect to the improved survival of these patients. For this reason, in recent years, numerous diagnostic tests, treatments, and possible approaches in the fields of radiotherapy, chemotherapy, immunotherapy, and surgery have been developed to find a combination of methods that improves life expectancy in patients diagnosed with this disease. On the other hand, the scientific community has made numerous advances in the molecular bases of pancreatic cancer since several oncogenetic pathways have been described and the markers expressed by the tumor have proven to be useful in the prognosis of pancreatic adenocarcinoma. These molecular alterations allow the study of possible therapeutic targets that improve the prognosis of these patients, but even numerous tumor cell-individual interactions must be explained to understand the underlying pathophysiology causing the high mortality. Therefore, the purpose of our study is to examine the expression of markers such as EGFR, Cyclin D1, andCDK4 in order to find a relationship with the possible long-term prognostic factors of patients affected by pancreatic ductal adenocarcinoma. Our results show that there is a prognostic role for ErbB2, EGFR, beta catenin, cyclin D1, and CDK4. Of these, we highlight the clinical importance of ErbB2 in the survival rates of patients who overexpress this component

    Prognostic role of IRS-4 in the survival of patients with pancreatic cancer

    No full text
    Pancreatic cancer is a malignancy of rising incidence, especially in developed countries due to causes such as sedentary lifestyles, tobacco smoking and ultraprocessed high fat and high sugar diets, amongst others. It is in fact the 7th cause of cancer-related deaths worldwide, and, in the following years, it is expected to climb upwards to 2nd position, after lung cancer. This is because it may have an asymptomatic course, and when it becomes evident it is in advanced stages, accompanied by metastasis generally. For this reason, survival rates are so low and, even in the few successful cases there is a high possibility of recurrence. Identifying new molecular biomarkers is arising as a highly useful tool for pancreatic cancer clinical management, although much research and work remain to be done in this field. Thus, the present study aims to analyze a series of molecules (IRS-4, Rb1, Ki-67 y COX-2) as candidates for prognosis and survival by immunohistochemistry techniques. Additionally, a 60-month longitudinal surveillance program was conducted, associated with diverse clinical parameters. Kaplan-Meier curves estimating the time of survival according to tumoral expression of those molecules denoted a low cumulative survival rate. Importantly, we observed that high levels of IRS-4 were significantly associated with a bad prognosis of the disease, increasing 160 times the mortality risk. In this way, our research showed a relevant value of these biomarkers in pancreatic cancer patients’ survival, opening a pathway for future research areas designed to inhibit these component
    corecore