7,790 research outputs found
Molecular Electroporation and the Transduction of Oligoarginines
Certain short polycations, such as TAT and polyarginine, rapidly pass through
the plasma membranes of mammalian cells by an unknown mechanism called
transduction as well as by endocytosis and macropinocytosis. These
cell-penetrating peptides (CPPs) promise to be medically useful when fused to
biologically active peptides. I offer a simple model in which one or more CPPs
and the phosphatidylserines of the inner leaflet form a kind of capacitor with
a voltage in excess of 180 mV, high enough to create a molecular electropore.
The model is consistent with an empirical upper limit on the cargo peptide of
40--60 amino acids and with experimental data on how the transduction of a
polyarginine-fluorophore into mouse C2C12 myoblasts depends on the number of
arginines in the CPP and on the CPP concentration. The model makes three
testable predictions.Comment: 15 pages, 5 figure
How does torsional rigidity affect the wrapping transition of a semiflexible chain around a spherical core?
We investigated the effect of torsional rigidity of a semiflexible chain on
the wrapping transition around a spherical core, as a model of nucleosome, the
fundamental unit of chromatin. Through molecular dynamics simulation, we show
that the torsional effect has a crucial effect on the chain wrapping around the
core under the topological constraints. In particular, the torsional stress (i)
induces the wrapping/unwrapping transition, and (ii) leads to a unique complex
structure with an antagonistic wrapping direction which never appears without
the topological constraints. We further examine the effect of the stretching
stress for the nucleosome model, in relation to the unique characteristic
effect of the torsional stress on the manner of wrapping
Efficiency at maximum power of interacting molecular machines
We investigate the efficiency of systems of molecular motors operating at
maximum power. We consider two models of kinesin motors on a microtubule: for
both the simplified and the detailed model, we find that the many-body
exclusion effect enhances the efficiency at maximum power of the many-motor
system, with respect to the single motor case. Remarkably, we find that this
effect occurs in a limited region of the system parameters, compatible with the
biologically relevant range.Comment: To appear in Phys. Rev. Let
Unifying model of driven polymer translocation
We present a Brownian dynamics model of driven polymer translocation, in
which non-equilibrium memory effects arising from tension propagation (TP)
along the cis side subchain are incorporated as a time-dependent friction. To
solve the effective friction, we develop a finite chain length TP formalism,
expanding on the work of Sakaue [Sakaue, PRE 76, 021803 (2007)]. The model,
solved numerically, yields results in excellent agreement with molecular
dynamics simulations in a wide range of parameters. Our results show that
non-equilibrium TP along the cis side subchain dominates the dynamics of driven
translocation. In addition, the model explains the different scaling of
translocation time w.r.t chain length observed both in experiments and
simulations as a combined effect of finite chain length and pore-polymer
interactions.Comment: 7 pages, 3 figure
Clustering Coefficients of Protein-Protein Interaction Networks
The properties of certain networks are determined by hidden variables that
are not explicitly measured. The conditional probability (propagator) that a
vertex with a given value of the hidden variable is connected to k of other
vertices determines all measurable properties. We study hidden variable models
and find an averaging approximation that enables us to obtain a general
analytical result for the propagator. Analytic results showing the validity of
the approximation are obtained. We apply hidden variable models to
protein-protein interaction networks (PINs) in which the hidden variable is the
association free-energy, determined by distributions that depend on
biochemistry and evolution. We compute degree distributions as well as
clustering coefficients of several PINs of different species; good agreement
with measured data is obtained. For the human interactome two different
parameter sets give the same degree distributions, but the computed clustering
coefficients differ by a factor of about two. This shows that degree
distributions are not sufficient to determine the properties of PINs.Comment: 16 pages, 3 figures, in Press PRE uses pdflate
Sequence Heterogeneity Accelerates Protein Search for Targets on DNA
The process of protein search for specific binding sites on DNA is
fundamentally important since it marks the beginning of all major biological
processes. We present a theoretical investigation that probes the role of DNA
sequence symmetry, heterogeneity and chemical composition in the protein search
dynamics. Using a discrete-state stochastic approach with a first-passage
events analysis, which takes into account the most relevant physical-chemical
processes, a full analytical description of the search dynamics is obtained. It
is found that, contrary to existing views, the protein search is generally
faster on DNA with more heterogeneous sequences. In addition, the search
dynamics might be affected by the chemical composition near the target site.
The physical origins of these phenomena are discussed. Our results suggest that
biological processes might be effectively regulated by modifying chemical
composition, symmetry and heterogeneity of a genome.Comment: 10 pages, 5 figure
Contractile units in disordered actomyosin bundles arise from F-actin buckling
Bundles of filaments and motors are central to contractility in cells. The
classic example is striated muscle, where actomyosin contractility is mediated
by highly organized sarcomeres which act as fundamental contractile units.
However, many contractile bundles in vivo and in vitro lack sarcomeric
organization. Here we propose a model for how contractility can arise in
actomyosin bundles without sarcomeric organization and validate its predictions
with experiments on a reconstituted system. In the model, internal stresses in
frustrated arrangements of motors with diverse velocities cause filaments to
buckle, leading to overall shortening. We describe the onset of buckling in the
presence of stochastic actin-myosin detachment and predict that
buckling-induced contraction occurs in an intermediate range of motor
densities. We then calculate the size of the "contractile units" associated
with this process. Consistent with these results, our reconstituted actomyosin
bundles contract at relatively high motor density, and we observe buckling at
the predicted length scale.Comment: 5 pages, 4 figures, Supporting text and movies attache
Surface tension in bilayer membranes with fixed projected area
We study the elastic response of bilayer membranes with fixed projected area
to both stretching and shape deformations. A surface tension is associated to
each of these deformations. By using model amphiphilic membranes and computer
simulations, we are able to observe both the types of deformation, and thus,
both the surface tensions, related to each type of deformation, are measured
for the same system. These surface tensions are found to assume different
values in the same bilayer membrane: in particular they vanish for different
values of the projected area. We introduce a simple theory which relates the
two quantities and successfully apply it to the data obtained with computer
simulations
Gene-network inference by message passing
The inference of gene-regulatory processes from gene-expression data belongs
to the major challenges of computational systems biology. Here we address the
problem from a statistical-physics perspective and develop a message-passing
algorithm which is able to infer sparse, directed and combinatorial regulatory
mechanisms. Using the replica technique, the algorithmic performance can be
characterized analytically for artificially generated data. The algorithm is
applied to genome-wide expression data of baker's yeast under various
environmental conditions. We find clear cases of combinatorial control, and
enrichment in common functional annotations of regulated genes and their
regulators.Comment: Proc. of International Workshop on Statistical-Mechanical Informatics
2007, Kyot
Nematic and Polar order in Active Filament Solutions
Using a microscopic model of interacting polar biofilaments and motor
proteins, we characterize the phase diagram of both homogeneous and
inhomogeneous states in terms of experimental parameters. The polarity of motor
clusters is key in determining the organization of the filaments in homogeneous
isotropic, polarized and nematic states, while motor-induced bundling yields
spatially inhomogeneous structures.Comment: 4 pages. 3 figure
- …
