18 research outputs found

    Towards preserving word order importance through Forced Invalidation

    Get PDF
    Large pre-trained language models such as BERT have been widely used as a framework for natural language understanding (NLU) tasks. However, recent findings have revealed that pre-trained language models are insensitive to word order. The performance on NLU tasks remains unchanged even after randomly permuting the word of a sentence, where crucial syntactic information is destroyed. To help preserve the importance of word order, we propose a simple approach called FORCED INVALIDATION (FI): forcing the model to identify permuted sequences as invalid samples. We perform an extensive evaluation of our approach on various English NLU and QA based tasks over BERT-based and attention-based models over word embeddings. Our experiments demonstrate that FI significantly improves the sensitivity of the models to word order

    Reduction of ILP search space with bottom-up propositionalisation

    No full text
    This paper introduces a method for algorithmic reduction of the search space of an ILP task, omitting the need for explicit language bias. It relies on bottom-up propositionalisation of examples and background knowledge. A proof of concept has been developed for observational learning of stratified normal logic programs

    Empirical shear based model for predicting plate end debonding in FRP strengthened RC beams

    Get PDF
    This paper presents the development of a simplified model for predicting plate end (PE) debonding capacity of reinforced concrete (RC) beams flexurally strengthened using fiber reinforced polymers (FRP). The proposed model is based on the concrete shear strength of the beams considering main parameters known to affect the opening of the shear cracks and consequently affect PE debonding. The model considers also the effect of the location of the cut-off point of FRP plate along the span of the beam. The proposed model was verified against experimental database of 128 FRP-strengthened beams collected from previous studies that failed in PE debonding. In addition, the predictions of the proposed model were also compared with those of the existing PE debonding models. The predictions of the model were found to be comparable to the best predictions provided by the existing models, yet the proposed model is simpler. Furthermore, the proposed model was combined with the ACI 440 IC debonding equation to provide a procedure for predicting the governing debonding failure mode in FRP strengthened RC beams. The procedure was validated against 238 beam tests available in the literature, and shown to be a reliable approach

    Finite Element Modeling of Debonding Failures in FRP-Strengthened Concrete Beams Using Cohesive Zone Model

    No full text
    Intermediate crack (IC) debonding and concrete cover separation (CCS) are common types of debonding failures in concrete beams flexurally strengthened with fiber-reinforced polymer (FRP) composites. In this paper, a three-dimensional finite element (FE) model was developed to simulate the flexural behavior and predict the critical debonding failure in FRP-strengthened beams. The two critical debonding failures were considered in the FE model by implementing a cohesive zone model based on fracture mechanics considering the effect of the related parameters. The input values used for the cohesive zone model are modified in this study to obtain accurate and consistent predictions. The FE model was validated by comparison with experimental results tested by the authors for beams particularly prone to fail by either of the two critical debonding failures. The results obtained from the FE model agree well with the experimental results for both of the debonding failures and the corresponding capacities at failure. In general, the ratio of the experimental to numerical ultimate capacities was within 5%, and so was the ratio of the experimental to numerical mid-span deflections at debonding failures. The FE model developed in this study was then used to conduct a parametric study investigating the effect of shear span-to-depth ratio and spacing of steel stirrups on the ultimate capacity and type of debonding failure in FRP-strengthened beams. The results of the parametric study revealed that increasing the spacing of steel stirrups caused a significant decrease in the load capacity at concrete cover separation failure. In addition, varying the shear span-to-depth ratio was seen to have an important effect on the type of debonding failure and corresponding capacities for the FRP-strengthened beams having the same cross-section geometry and CFRP reinforcement

    Evaluation of Web Shear Design Procedures for Precast Prestressed Hollow Core Slabs

    No full text
    Precast, prestressed hollow core slabs (HCS) are commonly used by the construction industry for floor and roof systems worldwide. Generally, the web shear strength governs the shear design of such members. This is because the web width resisting shear stresses is relatively small and the prestressing force at the bottom of the slabs restrains flexural cracking. Although most of the available design codes follow Mohr’s circle of stress for estimating the web shear cracking capacity of HCS, they produce different and scattered predictions. This paper gives more insight into the web shear design provisions of prestressed HCS in five of the available design codes. These codes include ACI 318, Eurocode 2, European standard EN 1168, CSA-A23.3, and AASHTO LRFD design specifications. A set of 229 data points was established from experimental investigations available in the literature on prestressed HCS that failed in the web shear. The dataset was used for evaluating the web shear design methods in the five codes. The results of the analysis indicated that both the simplified method of AASHTO and the ACI 318-19 method produced very conservative predictions. In contrast, the Eurocode 2 method produced unconservative predictions for most of the specimens in the dataset, whereas the ACI 318-05 method gave unconservative predictions for deeper sections. On the other hand, reasonable predictions were obtained by the EN 1168 method while the CSA-A23.3 method provided better predictions. Proposed modifications were presented for improving the predictions of the ACI 318, Eurocode 2, and EN 1168 web shear design methods for prestressed HCS

    Strengthening of structurally damaged wide shallow RC beams using externally bonded CFRP plates

    No full text
    Reinforced concrete wide shallow beams (WSBs) are commonly used in the joist flooring systems. The structural behavior of WSBs strengthened with carbon fiber reinforced polymer (CFRP) reinforcement was studied on isolated beams and as part of full-scale building. The effect of structural damage on the performance of WSBs flexurally strengthened with CFRP plates was investigated and presented in this paper. Eight full-scale WSBs were tested under four-point bending up to failure. Seven beams were strengthened with CFRP plates bonded to the soffit of the beams and one beam was unstrengthened serving as control. Prior to strengthening, the beams were subjected to different levels of damaging by preloading to 30-95% of the beams' flexural capacity. One beam was fully damaged by preloading to failure and repaired before strengthening by replacing the crushed concrete. The data showed that the pre-damaged strengthened beams exhibited ultimate capacities up to 8% lower than those of the undamaged strengthened beams. However, the load carrying capacities of pre-damaged strengthened beams were more than those predicted by ACI 440 design guide, fib Bulletin 14, and JSCE design recommendations. Both fib Bulletin 14 and JSCE design recommendations gave very conservative predictions with average ratios of experimental to predicted ultimate capacity of 2.02 and 2.35, respectively. More accurate predictions were obtained by ACI 440 design guide as the corresponding ratio was 1.24. These results indicate that strong confidence and reliability can be placed in applying CFRP strengthening to structurally damaged WSBs
    corecore