515 research outputs found

    Systematic Analysis of Frustration Effects in Anisotropic Checkerboard Lattice Hubbard Model

    Full text link
    We study the ground state properties of the geometrically frustrated Hubbard model on the anisotropic checkerboard lattice with nearest-neighbor hopping tt and next nearest-neighbor hopping t′t'. By using the path-integral renormalization group method, we study the phase diagram in the parameter space of the Hubbard interaction UU and the frustration-control parameter t′/tt'/t. Close examinations of the effective hopping, the double occupancy, the momentum distribution and the spin/charge correlation functions allow us to determine the phase diagram at zero temperature, where the plaquette-singlet insulator emerges besides the antiferromagnetic insulator and the paramagnetic metal. Spin-liquid insulating states without any kind of symmetry breaking cannot be found in our frustrated model.Comment: 7pages, 5figure

    Influence of pure-dephasing by phonons on exciton-photon interfaces: Quantum microscopic theory

    Get PDF
    We have developed a full quantum microscopic theory to analyze the time evolution of transversal and longitudinal components of an exciton-single photon system coupled to bulk acoustic phonons. These components are subjected to two decay processes. One is radiative relaxation and the other is pure-dephasing due to exciton-phonon interaction. The former results in a decay with an exponent linear to time, while the latter causes a faster initial decay than the radiative decay. We analyzed the dependence of the components on the duration of the input one-photon pulse, temperature, and radiative relaxation rates. Such a quantitative analysis is important for the developments of atom-photon interfaces which enable coherent transfer of quantum information between photons and atomic systems. We found that, for a GaAs spherical quantum dot in which the exciton interacts with bulk phonons, the maximal probability of the excited state can be increased up to 75 %. This probability can be considered as the efficiency for quantum information transfer from photon to exciton.Comment: 9pages, 5figure

    Measured Quantum Fourier Transform of 1024 Qubits on Fiber Optics

    Full text link
    Quantum Fourier transform (QFT) is a key function to realize quantum computers. A QFT followed by measurement was demonstrated on a simple circuit based on fiber-optics. The QFT was shown to be robust against imperfections in the rotation gate. Error probability was estimated to be 0.01 per qubit, which corresponded to error-free operation on 100 qubits. The error probability can be further reduced by taking the majority of the accumulated results. The reduction of error probability resulted in a successful QFT demonstration on 1024 qubits.Comment: 15 pages, 6 figures, submitted to EQIS 2003 Special issue, Int. J. Quantum Informatio

    Ferromagnetism of cold fermions loaded into a decorated square lattice

    Full text link
    We investigate two-component ultracold fermions loaded into a decorated square lattice, which are described by the Hubbard model with repulsive interactions and nearest neighbor hoppings. By combining the real-space dynamical mean-field theory with the numerical renormalization group method, we discuss how a ferromagnetically ordered ground state in the weak coupling regime, which originates from the existence of a dispersionless band, is adiabatically connected to a Heisenberg ferrimagnetic state in the strong coupling limit. The effects of level splitting and hopping imbalance are also addressed.Comment: 8 pages, 7 figure

    Mott insulating state in a quarter-filled two-orbital Hubbard chain with different bandwidths

    Full text link
    We investigate the ground-state properties of the one-dimensional two-band Hubbard model with different bandwidths. The density-matrix renormalization group method is applied to calculate the averaged electron occupancies nn as a function of the chemical potential ÎĽ\mu. Both at quarter and half fillings, "charge plateaux" appear in the nn-ÎĽ\mu plot, where dÎĽ/dnd\mu/dn diverges and the Mott insulating states are realized. To see how the orbital polarization in the one-quarter charge plateau develops, we apply the second-order perturbation theory from the strong-coupling limit at quarter filling. The resultant Kugel-Khomskii spin-orbital model includes a magneticmagnetic field coupled to orbital pseudo-spins. This field originates from the discrepancy between the two bandwidths and leads to a finite orbital pseudo-spin magnetization.Comment: 4 pages, 2 figures, Proceedings of LT2

    Finite-temperature Mott transitions in multi-orbital Hubbard model

    Full text link
    We investigate the Mott transitions in the multi-orbital Hubbard model at half-filling by means of the self-energy functional approach. The phase diagrams are obtained at finite temperatures for the Hubbard model with up to four-fold degenerate bands. We discuss how the first-order Mott transition points Uc1U_{c1} and Uc2U_{c2} as well as the critical temperature TcT_c depend on the orbital degeneracy. It is elucidated that enhanced orbital fluctuations play a key role to control the Mott transitions in the multi-orbital Hubbard model.Comment: 8 pages, 7 figure

    Spin, charge and orbital fluctuations in a multi-orbital Mott insulator

    Full text link
    The two-orbital degenerate Hubbard model with distinct hopping integrals is studied by combining dynamical mean-field theory with quantum Monte Carlo simulations. The role of orbital fluctuations for the nature of the Mott transition is elucidated by examining the temperature dependence of spin, charge and orbital susceptibilities as well as the one-particle spectral function. We also consider the effect of the hybridization between the two orbitals, which is important particularly close to the Mott transition points. The introduction of the hybridization induces orbital fluctuations, resulting in the formation of a Kondo-like heavy-fermion behavior, similarly to ff electron systems, but involving electrons in bands of comparable width.Comment: 8 pages, 9 figure

    Statistical analysis on testing of an entangled state based on Poisson distribution framework

    Get PDF
    A hypothesis testing scheme for entanglement has been formulated based on the Poisson distribution framework instead of the POVM framework. Three designs were proposed to test the entangled states in this framework. The designs were evaluated in terms of the asymptotic variance. It has been shown that the optimal time allocation between the coincidence and anti-coincidence measurement bases improves the conventional testing method. The test can be further improved by optimizing the time allocation between the anti-coincidence bases.Comment: This paper is an extended version of the theoretical part of v1 of quant-ph/0603254.quant-ph/0603254 is revised so that it is more familiar to experimentalist

    Existence of the Wigner function with correct marginal distributions along tilted lines on a lattice

    Get PDF
    In order to determine the Wigner function uniquely, we introduce a new condition which ensures that the Wigner function has correct marginal distributions along tilted lines. For a system in NN dimensional Hilbert space, whose "phase space" is a lattice with N2N^2 sites, we get different results depending on whether NN is odd or even. Under the new condition, the Wigner function is determined if NN is an odd number, but it does not exist if NN is even.Comment: 18 page
    • …
    corecore