14 research outputs found

    Modulation of the formation of adhesions during the healing of injured tendons

    No full text
    The formation of restrictive adhesions around the musculotendinous unit after injury is one of the most vexing processes faced by the surgeon. In flexor tendons it has been shown that the synovial tissue is the source of aggressive fibroblasts which contribute to this process. Using a rabbit model, we have examined the effects of treating the synovial sheath with the antimetabolite 5-fluorouracil (5-FU) for five minutes. Inflammatory, proliferative and molecular markers were compared in the response of the treated and control tendons to injury. Compared with a control group we found that the proliferative and inflammatory responses were significantly reduced (p &lt; 0.001) in the treated tendons. Not only was there a reduction in the cellular and cytokine response, but there also was a significant (p &lt; 0.001) reduction in the level of activity of the known pro-scarring agent, transforming growth factor beta 1 (TGF-β1). These pilot studies indicate that the formation of restrictive adhesions may be modulated using a simple single-touch technique in the hope of producing a better return of function. </jats:p

    A new material for prevention of peritendinous fibrotic adhesions after tendon repair: oxidised regenerated cellulose (Interceed), an absorbable adhesion barrier

    Get PDF
    In this experimental study, we aimed to examine the ability of absorbable oxidised regenerated cellulose (Interceed, TC-7, Johnson & Johnson, USA) to inhibit the formation of peritendinous fibrotic adhesions after tendon repair in rats. Both Achilles tendons of 23 female Wistar-Albino rats weighing between 350 and 450 grams were cut and repaired. On the right side, Interceed absorbable adhesion barriers were wrapped around the repaired tendon (group I). On the left, the same procedures were applied except for the Interceed wrapping and these were grouped as control (group II). Animals were sacrificed at postoperative day 28 and macroscopic and histological examination was performed. All the animals survived and no tendon rupture was observed. No wound dehiscence, wound infection or exposure of repaired tendons occurred. Macroscopically, there were three (13.1%) tendons without adhesion formation and 20 (86.9%) tendons with inferior adhesion formation in group I; on the other hand, there were 16 tendons (69.5%) with medium grade adhesion formation and seven tendons (30.5%) with severe peritendinous adhesion formation in group II (control group) (p < 0.05). Histologically, adhesion formation was absent in 11 tendons (47.8%) and slight in 12 tendons (52.2%) in group I; while in group II, it was slight in two (8.6%), moderate in 15 (65.2%) and severe in six tendons (26.2%) (p < 0.05). Sixteen (69.5%) of 23 tendons in group I and 11 (47.8%) of 23 tendons in group II showed no inflammatory reaction (p  < 0.05). Nineteen (82.6%) tendons in group I and only one tendon in group II showed excellent to good tendon healing (p = 0.00). According to our results, we feel that Interceed may have an intraoperative role to play in the reduction of adhesions after surgical tendon repair. This study suggests that absorbable oxidised regenerated cellulose merits further evaluation as a potential treatment to inhibit the formation of peritendinous adhesions. Rigorous and extensive controlled trials should be undertaken on patients undergoing tendon repair with or without this barrier

    The mechanics of flexor tendon adhesions

    No full text
    The mechanics of adhesions at a local tissue level have not been extensively studied. This study compared microstrains and macrostrains in adhesions of immobilized and mobilized partially lacerated flexor digitorum profundus tendons in a New Zealand White rabbit model. At 2 weeks, 50 digits were randomized to either gross tensile testing or micromechanical assessment, in which the movement of fluorescently labelled cell nuclei, acting as dynamic markers, was visualized using real-time confocal microscopy. The structural stiffness and load at failure of immobilized adhesions were 140% and 160% of that of mobilized adhesions, respectively, and both differences were statistically significant. Micromechanically, different patterns of loading and failure were observed. Mobilized adhesions exhibited over a three-fold higher local strain, which was less uniformly distributed. Confocal microscopy provided an accurate measure of local strain. For the first time, it has been possible to visualize, define, and quantify local adhesion tissue mechanics. Mobilization appears to favour the formation of sites expressing increased local strain responses or those predisposed to heterogeneity and localized failur
    corecore