4,206 research outputs found

    A brief review of "little string theories"

    Get PDF
    This is a brief review of the current state of knowledge on "little string theories", which are non-gravitational theories having several string-like properties. We focus on the six dimensional maximally supersymmetric "little string theories" and describe their definition, some of their simple properties, the motivations for studying them, the DLCQ and holographic constructions of these theories and their behaviour at finite energy density. (Contribution to the proceedings of Strings '99 in Potsdam, Germany.)Comment: 11 pages, contribution to Strings '99 proceeding

    On the theory of phase transition in muliferroics

    Full text link
    In this paper we investigate peculiarities of phase transition high-symmetry - incommensurate phase in inhomogeneous systems. We obtain the nonlinear dispersion law and then present a renormalization group analysis of phase transitions in multiferroics. We have determined the dependence of critical indices on the nonextensivity parameter of the system

    Percolation in high dimensions is not understood

    Full text link
    The number of spanning clusters in four to nine dimensions does not fully follow the expected size dependence for random percolation.Comment: 9-dimensional data and more points for large lattices added; statistics improved, text expanded, table of exponents inserte

    Noncommutative instantons revisited

    Get PDF
    We find a new gauge in which U(1) noncommutative instantons are explicitly non-singular on the whole noncommutative R^4, thus resolving the previous confusions of the author. We start with the pedagogical introduction to the noncommutative gauge theories.Comment: 24pp. uses sprocl.st

    Transport through molecular junctions with a nonequilibrium phonon population

    Full text link
    The calculation of the nonlinear conductance of a single-molecule junction is revisited. The self energy on the junction resulting from the electron-phonon interaction has at low temperatures logarithmic singularities (in the real part) and discontinuities (in the imaginary one) at the frequencies corresponding to the opening of the inelastic channels. These singularities generate discontinuities and logarithmic divergences (as a function of the bias voltage) in the low-temperature differential conductance around the inelastic thresholds. The self energy also depends on the population of the vibrational modes. The case of a vibrating free junction (not coupled to a thermal bath), where the phonon population is determined by the bias voltage is examined. We compare the resulting zero-temperature differential conductance with the one obtained for equilibrated phonons, and find that the difference is larger the larger is the bare transmission of the junction and the product of the electron dwell time on the junction with the phonon frequency.Comment: 4 page

    Stable Non-Supersymmetric Supergravity Solutions from Deformations of the Maldacena-Nunez Background

    Get PDF
    We study a deformation of the type IIB Maldacena-Nunez background which arises as the near-horizon limit of NS5 branes wrapped on a two-cycle. This background is dual to a "little string theory" compactified on a two-sphere, a theory which at low energies includes four-dimensional N = 1 super Yang-Mills theory. The deformation we study corresponds to a mass term for some of the scalar fields in this theory, and it breaks supersymmetry completely. In the language of seven-dimensional SO(4) gauged supergravity the deformation involves (at leading order) giving a VEV, depending only on the radial coordinate, to a particular scalar field. We explicitly construct the corresponding solution at leading order in the deformation, both in seven-dimensional and in ten-dimensional supergravity, and we verify that it completely breaks supersymmetry. Since the original background had a mass gap and we are performing a small deformation, the deformed background is guaranteed to be stable even though it is not supersymmetric.Comment: 1+31 pages, one figure. v2: minor clarifications, refs adde

    Two-dimensional Site-Bond Percolation as an Example of Self-Averaging System

    Full text link
    The Harris-Aharony criterion for a statistical model predicts, that if a specific heat exponent α≄0\alpha \ge 0, then this model does not exhibit self-averaging. In two-dimensional percolation model the index α=−1/2\alpha=-{1/2}. It means that, in accordance with the Harris-Aharony criterion, the model can exhibit self-averaging properties. We study numerically the relative variances RMR_{M} and RχR_{\chi} for the probability MM of a site belongin to the "infinite" (maximum) cluster and the mean finite cluster size χ\chi. It was shown, that two-dimensional site-bound percolation on the square lattice, where the bonds play the role of impurity and the sites play the role of the statistical ensemble, over which the averaging is performed, exhibits self-averaging properties.Comment: 15 pages, 5 figure
    • 

    corecore