14,759 research outputs found

    Temperature dependence of the spin and orbital magnetization density in Sm1xGdxAl2Sm_{1-x}Gd_{x} Al_{2} around the spin-orbital compensation point

    Full text link
    Non-resonant ferromagnetic x-ray diffraction has been used to separate the spin and orbital contribution to the magnetization density of the proposed zero-moment ferromagnet Sm0.982Gd0.018Al2Sm_{0.982}Gd_{0.018} Al_{2}. The alignment of the spin and orbital moments relative to the net magnetization shows a sign reversal at 84K, the compensation temperature. Below this temperature the orbital moment is larger than the spin moment, and vice versa above it. This result implies that the compensation mechanism is driven by the different temperature dependencies of the 4f4f spin and orbital moments. Specific heat data indicate that the system remains ferromagnetically ordered throughout

    Modulated Vortex Lattice in High Fields and Gap Nodes

    Get PDF
    The mean field vortex phase diagram of a quasi two dimensional superconductor with a nodal d-wave pairing and with strong Pauli spin depairing is examined in the parallel field case in order to examine an effect of gap nodes (or minima) on the stability of a FFLO-like vortex lattice. We find through a heuristic argument and a model calculation with a four-fold anisotropic Fermi velocity that the FFLO-like state is relatively suppressed as the field approaches a nodal direction. When taking account of a couple of experimental results altogether, the present result strongly suggests that a node or gap minimum of the pairing function of CeCoIn5_5 is located along the [100]-direction.Comment: 5 pages, 2 figures, References were added. To appear in Phys. Rev.

    Destruction of chain-superconductivity in YBa_2Cu_4O_8 in a weak magnetic field

    Full text link
    We report measurements of the temperature dependent components of the magnetic penetration depth {\lambda}(T) in single crystal samples of YBa_2Cu_4O_8 using a radio frequency tunnel diode oscillator technique. We observe a downturn in {\lambda}(T) at low temperatures for currents flowing along the b and c axes but not along the a axis. The downturn in {\lambda}_b is suppressed by a small dc field of ~0.25 T. This and the zero field anisotropy of {\lambda}(T) likely result from proximity induced superconducting on the CuO chains, however we also discuss the possibility that a significant part of the anisotropy might originate from the CuO2 planes.Comment: 5 page

    Precise measurements of electron and hole g-factors of single quantum dots by using nuclear field

    Get PDF
    We demonstrated the cancellation of the external magnetic field by the nuclear field at one edge of the nuclear polarization bistability in single InAlAs quantum dots. The cancellation for the electron Zeeman splitting gives the precise value of the hole g-factor. By combining with the exciton g-factor that is obtained from the Zeeman splitting for linearly polarized excitation, the magnitude and sign of the electron and hole g-factors in the growth direction are evaluated.Comment: 3 pages, 2 figure

    Linear-response theory of the longitudinal spin Seebeck effect

    Full text link
    We theoretically investigate the longitudinal spin Seebeck effect, in which the spin current is injected from a ferromagnet into an attached nonmagnetic metal in a direction parallel to the temperature gradient. Using the fact that the phonon heat current flows intensely into the attached nonmagnetic metal in this particular configuration, we show that the sign of the spin injection signal in the longitudinal spin Seebeck effect can be opposite to that in the conventional transverse spin Seebeck effect when the electron-phonon interaction in the nonmagnetic metal is sufficiently large. Our linear-response approach can explain the sign reversal of the spin injection signal recently observed in the longitudinal spin Seebeck effect.Comment: Proc. of ICM 2012 (Accepted for publication in J. Korean Phys. Soc.), typos correcte

    Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots

    Full text link
    A systematic variation of the exciton fine-structure splitting with quantum dot size in single InAs/GaAs quantum dots grown by metal-organic chemical vapor deposition is observed. The splitting increases from -80 to as much as 520 μ\mueV with quantum dot size. A change of sign is reported for small quantum dots. Model calculations within the framework of eight-band k.p theory and the configuration interaction method were performed. Different sources for the fine-structure splitting are discussed, and piezoelectricity is pinpointed as the only effect reproducing the observed trend.Comment: 5 pages, 5 figure

    S-wave bottom tetraquarks

    Full text link
    The relativistic four-quark equations are found in the framework of coupled-channel formalism. The dynamical mixing of the meson-meson states with the four-quark states is considered. The four-quark amplitudes of the tetraquarks, including uu, dd, ss and bottom quarks, are constructed. The poles of these amplitudes determine the masses and widths of SS-wave bottom tetraquarks.Comment: 8 pages, late
    corecore