2 research outputs found
Automatic Balancing of a Rotor-Bearing System: On-line Algebraic Identifier for a Rotordynamic Balancing System
[ES] En este artículo, se presenta una metodología para balancear varios modos de vibración a la vez de un sistema rotor-cojinete mediante lo que se denomina discos de balanceo activo. Para determinar la magnitud del desbalance y su posición angular en el rotor, se propone un identificador en línea basado en la técnica de identificación algebraica. Para lo anterior, se desarrolló un modelo matemático en elemento finito para un sistema rotatorio de múltiples grados de libertad, donde se consideró un elemento viga con cuatro grados de libertad por nodo, en este modelo se consideran los efectos de inercia rotatoria, momentos giroscópicos, deformaciones por cortante y amortiguamiento interno y externo, así como la implementación al sistema rotor-cojinete de los discos de balanceo activo. Asimismo, se evaluó y analizó el comportamiento en el tiempo del identificador propuesto para una distribución de masas de desbalance en diferentes puntos a lo largo del rotor, tomando como dato de entrada la respuesta de vibración obtenida de la simulación de un sistema rotodinámico de múltiples grados de libertad, con diferentes rampas de excitación de tipo lineal. De los resultados obtenidos se demuestra, que con dos discos de balanceo activo se puede balancear hasta cuatro modos de vibración al mismo tiempo.[EN] A methodology for simultaneously balancing of several modes of vibration for a rotor bearing system by mean the so-called active balancing disk is presented in this paper. In order to determine the magnitude of the unbalance and its angular position on the rotor, it is proposed an on-line identifier based on algebraic identification. A mathematical model was developed for a multiple degrees-of-freedom rotational system for a beam-type finite element with 4 degrees of freedom per node. This model considers the effect of rotating inertia, gyroscope moments, shearing strains, internal-external damping and the presence of active balancing disks. Likewise, the time scale behavior of the proposed algebraic identifier was assessed and analyzed for an unbalanced mass distribution on different locations along the rotor. For this test, the vibration response was obtained from a multiple degrees-of-freedom rotor dynamic system simulation, with several linear coasting up and down. The results show that it is possible to simultaneously balance up to four vibration modes using two active balancing disks.Agradecemos a la DGEST por el apoyo recibido mediante el financiamiento al proyecto titulado “Diseño y Construcción de un Disco Balanceador Activo para Maquinaria Rotatoria” con clave
5294.14-P.Mendoza Larios, J.; Colín Ocampo, J.; Blanco Ortega, A.; Abúndez Pliego, A.; Gutiérrez Wing, E. (2016). Balanceo Automático de un Sistema Rotor-Cojinete: Identificador Algebraico en Línea del Desbalance Para un Sistema Rotodinámico. Revista Iberoamericana de Automática e Informática industrial. 13(3):281-292. https://doi.org/10.1016/j.riai.2016.03.004OJS281292133Arredondo, J.; Jugo, J.; Alonso-Quesada, S.; Lizárraga, I. y Etxebarria, V. (2008). Modelización, análisis y control de sistemas de cojinetes magnéticos activos. Revista Iberoamericana de Automática e Informática Industrial. Vol. 5, No. 4, (Octubre 2008), pp. 17-27, ISSN: 1697-7912. DOI: 10.4995/S1697-7912(08)70173-0Beltrán-Carbajal, F.; Silva-Navarro, G. and Arias-Montiel, M. (2013). Active unbalance control of rotor systems using on-line algebraic identification methods. Asian journal of control, Vol. 15, No. 6, 1627-1637. DOI: 10.1002/asjc.744Beltrán-Carbajal, F.; Silva-Navarro, G. y Arias-Montiel, M. (2014). Control activo de vibraciones en un rotor tipo Jeffcott con velocidad variable usando una suspensión electromecánica. Revista Iberoamericana de Automática e Informática Industrial. Vol. 11, No. 3, pp. 17-27, ISSN: 1697-7912. DOI: 10.1016/j.riai.2014.05.002Beltrán-Carbajal, F.; Silva-Navarro, G.; Sira-Ramírez, H. and Blanco-Ortega, A. (2008). Computación y Sistemas Vol. 13 No. 3, 2010, pp 313-330.Beltrán-Carbajal, F.; Silva-Navarro, G.; Sira-Ramírez, H. and QuezadaAndrade, J. (2005). Active vibration control using on-line algebraic identification of harmonic vibrations. Proceedings of American control conference, Portland, Oregon.Beltrán-Carbajal, F.; Sira-Ramírez, H. and Silva-Navarro, G. (2006). Adaptive-like Active vibration suppression for a nonlinear mechanical system using on-line algebraic identification. Proceedings of the thirteenth international congress on sound and vibration, Vienna, Austria.Blanco, A.; Beltrán, F. and Silva, G. (2008). Active disk for automatic balancing of rotor-bearing systems. American Control Conference, ACC 2008. pp. 3023 - 3028, ISBN 978-1-4244-2079-7, Seattle, WA, USA, June 11-13, 2008. DOI: 10.1109/ACC.2008.4586956Blanco, A.; Silva, G. and Gómez, J. C. (2003). Dynamic stiffness control and acceleration scheduling for the active balancing control of a Jeffcott-like rotor system. Proceedings of The tenth International Congress on Sound and Vibration, pp. 227-234, Stockholm, Sweden, July 7-10, 2003.Blanco, A.; Beltrán, F.; Silva, G. and Méndez, H. (2010). Control de Vibraciones en Sistemas Rotatorios, Revista Iberoamericana de Automática e Informática Industrial. Vol. 7, No. 4, 36-43, ISSN 1697- 7912. DOI: 10.4995/RIAI.2010.04.06Chong-Won, L. (2006). Mechatronics in rotating machinery. 7th IFToMMConference on Rotor Dynamics, pp. 25-28, Vienna, Austria, September, 2006.De Queiroz, M.S. (2009), An active identification method of rotor unbalance parameters, Journal of Vibration and Control, pp. 1365-1374. Vol. 15, No. 9.Fliess, M. and Sira-Ramírez, H. (2003). An algebraic frame work for linear identification. ESAIM: Control, optimization and calculus of variations 9, 151-168. DOI: 10.1051/cocv:2003008Forte, P.; Paterno, M. and Rustighi, E. (2004). A magnetorheological fluid damper for rotor applications. International Journal of Rotating Machinery, 10(3), pp. 175-182. DOI: 10.1080/10236210490426253Green K, Champneys A.R., Friswell M.I. y Muñoz (2008) A.M. Investigation of a multi-ball, automatic dynamic balancing mechanism for eccentric rotors. Royal Society Publishing, pp. 705-728, Vol. 366, No. 1866. DOI : 10.1098/rsta.2007.2123Hredzak, B. and Guo, G. (2006). Adjustable balancer with electromagnetic release of balancing members. IEEE Transactions on Magnetics, pp. 1591- 1596, Vol. 42, No. 5. DOI: 10.1109/TMAG.2005.863619Lalanne, M.; Ferraris, G. (1990). Rotordynamics prediction in engineering. John Wiley & Sons Ltd. ISBN 0471926337.Ljung, L. (1987). Systems Identification: Theory for the User, Englewood Cliffs, New Jersey: Prentice-Hall, ISBN: 0136566952Mahfoud, J., Der Hagopian, J., Levecque, N. Steffen Jr. V. (2009), Experimental model to control and monitor rotating machines, Mechanism and Machine Theory, pp. 761-771.Manuel Arias, M.; Beltrán-Carbajal, F. and Silva-Navarro (2014), G. On-line algebraic identification of eccentricity parameters in active rotor-bearing systems, International Journal of Mechanical Sciences, DOI: 10.1016/j.ijmecsci.2014.05.027Sagara, S. and Zhao, Z. Y. (1989). Recursive identification of transfer function matrix in continuous systems via linear integral filter. International journal of control 50(2), 457-477.Sagara, S. and Zhao, Z. Y. (1990). Numerical integration approach to on-line identification of continuous systems. Automatic 26(1), 63-74.Sira-Ramírez, H.; García-Carlos, C.; Cortés-Romero, J. and Luviano-Juárez A. (2014). Algebraic identification and estimation methods in feedback control systems. John Wiley & Sons ISBN 978-1-118-73060-7Soderstrom, T. and Stoica, P. (1989). System Identification, New York: Prentice-Hall, ISBN: 0138812365.Sudhakar, G.N.D.S. and Sekhar, A.S. (2011), Identification of Unbalance in a Rotor Bearing System, Journal of Sound and Vibration, pp. 2299-2313. Vol. 330, No. 10.Trapero, J. R. (2008). Técnicas de Identificación algebraicas y espectrales de señales armónicas. Aplicaciones en mecatrónica y economía. Ediciones de la UCLM, Cuenca 2008. ISBN: 9788484276388.Trapero, J. R.; Sira-Ramírez, H. and Feliu, B. V. (2006). An algebraic frequency estimator for a biased and noisy sinusoidal signal. Signal processing 87, 1188-1201. DOI: 10.1016/j.sigpro.2006.10.006Trapero, J. R.; Sira-Ramírez, H. and Feliu, B. V. (2007). A fast on-line frequency estimator of lightly damped vibrations in flexible structures. Journal of sound and vibration 307, 365-378. DOI: 10.1016/j.jsv.2007.07.005Ward, T. D. (2004). Method and system for balancing a rotating machinery operating at resonance, United States Patent. 6789422B1.Yuan-Pin, S. and An-Chen, L. (1997), Identification of unbalance distribution in flexible rotors, International Journal of Mechanical Sciences, pp. 841- 857, Vol. 39, No. 7.Zhou, S. and Shi, J. (2001). Active balancing and vibration control of rotating machinery: a survey, The Shock and Vibration Digest, pp. 361-371, Vol. 33, No. 4, 2001. DOI: 10.1177/05831024010330050
IDETC/CIE -28219 AN ENERGY BASED METHOD FOR WEAR ANALYSIS OF A CrCoMo-UHMWPE AND DLC-UHMWPE COUPLES FOR HIP PROSTHESIS
ABSTRACT In this work, a model to evaluate the abrasive wear between two semi-cylindrical entities is presented. The entities represent the average roughness radius, of the contact surfaces formed between the femoral head and acetabular cup of a hip prosthesis. The contact couples employed in this work are CrCoMo-UHMWPE and DLC-UHMWPE. Here three different interference distances were employed: 1, 2.5 and 40 percent of the mean radius roughness of the UHMWPE. The energy method proposed here determines the maximum contact stresses, from where the maximum point of distortional energy is obtained. This is then linked to the geometry of the cylindrical entity, which then gives the initial failure point. Subsequent similar calculations provide with the trajectory of the wearing path. The percentage of the abrasive wear obtained from this method was compared to Archard´s method. It was noted that the percentage of Archard's wear is a ten in million part from the total volume, while that the percentage of Energy's wear is between 2.760% and 7.055%, when an interference distance S=0.5 µm, was employed. It was also found that the CrCoMo-UHMWPE couple exhibited 22.84 % of volume lost compared with the 2.95 % of the DLC-UHMWPE couple