57 research outputs found

    Manipulating the Quantum State of an Electrical Circuit

    Full text link
    We have designed and operated a superconducting tunnel junction circuit that behaves as a two-level atom: the ``quantronium''. An arbitrary evolution of its quantum state can be programmed with a series of microwave pulses, and a projective measurement of the state can be performed by a pulsed readout sub-circuit. The measured quality factor of quantum coherence Qphi=25000 is sufficiently high that a solid-state quantum processor based on this type of circuit can be envisioned.Comment: 4 figures include

    Coherent dynamics of a Josephson charge qubit

    Get PDF
    We have fabricated a Josephson charge qubit by capacitively coupling a single-Cooper-pair box (SCB) to an electrometer based upon a single-electron transistor configured for radio-frequency readout (RF-SET). Charge quantization of 2e is observed and microwave spectroscopy is used to extract the Josephson and charging energies of the box. We perform coherent manipulation of the SCB by using very fast DC pulses and observe quantum oscillations in time of the charge that persist to ~=10ns. The observed contrast of the oscillations is high and agrees with that expected from the finite E_J/E_C ratio and finite rise-time of the DC pulses. In addition, we are able to demonstrate nearly 100% initial charge state polarization. We also present a method to determine the relaxation time T_1 when it is shorter than the measurement time T_{meas}.Comment: accepted for publication in Phys. Rev.

    Transferring the quantum state of electrons across a Fermi sea with Coulomb interaction

    Full text link
    The Coulomb interaction generally limits the quantum propagation of electrons. However, it can also provide a mechanism to transfer their quantum state over larger distances. Here, we demonstrate such a form of teleportation, across a metallic island within which the electrons are trapped much longer than their quantum lifetime. This effect originates from the low temperature freezing of the island's charge QQ which, in the presence of a single connected electronic channel, enforces a one-to-one correspondence between incoming and outgoing electrons. Such high-fidelity quantum state imprinting is established between well-separated injection and emission locations, through two-path interferences in the integer quantum Hall regime. The added electron quantum phase of 2πQ/e2\pi Q/e can allow for strong and decoherence-free entanglement of propagating electrons, and notably of flying qubits

    Observation of the scaling dimension of fractional quantum Hall anyons

    Full text link
    Unconventional quasiparticles emerging in the fractional quantum Hall regime present the challenge of observing their exotic properties unambiguously. Although the fractional charge of quasiparticles has been demonstrated since nearly three decades, the first convincing evidence of their anyonic quantum statistics has only recently been obtained and, so far, the so-called scaling dimension that determines the quasiparticles propagation dynamics remains elusive. In particular, while the non-linearity of the tunneling quasiparticle current should reveal their scaling dimension, the measurements fail to match theory, arguably because this observable is not robust to non-universal complications. Here we achieve an unambiguous measurement of the scaling dimension from the thermal to shot noise cross-over, and observe a long-awaited agreement with expectations. Measurements are fitted to the predicted finite temperature expression involving both the quasiparticles scaling dimension and their charge, in contrast to previous charge investigations focusing on the high bias shot noise regime. A systematic analysis, repeated on multiple constrictions and experimental conditions, consistently matches the theoretical scaling dimensions for the fractional quasiparticles emerging at filling factors 1/3, 2/5 and 2/3. This establishes a central property of fractional quantum Hall anyons, and demonstrates a powerful and complementary window into exotic quasiparticles

    Numerical analysis of the radio-frequency single-electron transistor operation

    Full text link
    We have analyzed numerically the response and noise-limited charge sensitivity of a radio-frequency single-electron transistor (RF-SET) in a non-superconducting state using the orthodox theory. In particular, we have studied the performance dependence on the quality factor Q of the tank circuit for Q both below and above the value corresponding to the impedance matching between the coaxial cable and SET.Comment: 14 page

    Solving thermal issues in tensile-strained Ge microdisks

    Get PDF
    International audienceWe propose to use a Ge-dielectric-metal stacking to allow one to address both thermal management with the metal as an efficient heat sink and tensile strain engineering with the buried dielectric as a stressor layer. This scheme is particularly useful for the development of Ge-based optical sources. We demonstrate experimentally the relevance of this approach by comparing the optical response of tensile-strained Ge microdisks with an Al heat sink or an oxide pedestal. Photoluminescence indicates a much reduced temperature rise in the microdisk (16 K with Al pedestal against 200 K with SiO 2 pedestal under a 9 mW continuous wave optical pumping). An excellent agreement is found with finite element modeling of the temperature rise. This original stacking combining metal and dielectrics is promising for integrated photonics where thermal management is an issue
    corecore