15,077 research outputs found

    Ignition Delay Times of Kerosene (Jet-A)/Air Mixtures

    Full text link
    Ignition of Jet-A/air mixtures was studied behind reflected shock waves. Heating of shock tube at temperature of 150 C was used to prepare a homogeneous fuel mixture. Ignition delay times were measured from OH emission at 309 nm and from absorption of He-Ne laser radiation at 3.3922 micrometers. The conditions behind shock waves were calculated by one-dimensional shock wave theory from initial conditions T1, P1, mixture composition and incident shock wave velocity. The ignition delay times were obtained at two fixed pressures 10, 20 atm for lean, stoichiometric and rich mixtures (ER=0.5, 1, 2) at an overall temperature range of 1040-1380 K.Comment: V.P. Zhukov, V.A. Sechenov, and A.Yu. Starikovskii, Ignition Delay Times of Kerosene(Jet-A)/Air Mixtures, 31st Symposium on Combustion, Heidelberg, Germany, August 6-11, 200

    Correlations of mutual positions of charge density waves nodes in side-by-side placed InAs wires measured with scanning gate microscopy

    Full text link
    We investigate the correlations of mutual positions of charge density waves nodes in side-by-side placed InAs nanowires in presence of a conductive atomic force microscope tip served as a mobile gate at helium temperatures. Scanning gate microscopy scans demonstrate mutual correlation of positions of charge density waves nodes of two wires. A general mutual shift of the nodes positions and "crystal lattice mismatch" defect were observed. These observations demonstrate the crucial role of Coulomb interaction in formation of charge density waves in InAs nanowires

    Investigations of local electronic transport in InAs nanowires by scanning gate microscopy at helium temperatures

    Full text link
    In the current paper a set of experiments dedicated to investigations of local electronic transport in undoped InAs nanowires at helium temperatures in the presence of a charged atomic-force microscope tip is presented. Both nanowires without defects and with internal tunneling barriers were studied. The measurements were performed at various carrier concentrations in the systems and opacity of contact-to-wire interfaces. The regime of Coulomb blockade is investigated in detail including negative differential conductivity of the whole system. The situation with open contacts with one tunneling barrier and undivided wire is also addressed. Special attention is devoted to recently observed quasi-periodic standing waves.Comment: 7 pages, 4 figures. arXiv admin note: text overlap with arXiv:1309.325

    Thomas-Ehrman effect in a three-body model: 16^{16}Ne case

    Get PDF
    The dynamic mechanism of the Thomas-Ehrman shift is studied in three-cluster systems by example of 16^{16}Ne and 16^{16}C isobaric mirror partners. We predict configuration mixings for 0+0^+ and 2+2^+ states in 16^{16}Ne and 16^{16}C. Large isospin symmetry breaking on the level of wave function component weights is demonstrated for these states and discussed as three-body mechanism of Thomas-Ehrman shift. It is shown that the description of the Coulomb displacement energies requires a consistency among three parameters: the 16^{16}Ne decay energy ETE_T, the 15^{15}F ground state energy ErE_r, and the configuration mixing parameters for the 16^{16}Ne/16^{16}C 0+0^+ and 2+2^+ states. Basing on this analysis we infer the 15^{15}F 1/2+1/2^+ ground state energy to be Er=1.391.42E_r=1.39-1.42 MeV.Comment: 10 pages 8 figure
    corecore