4 research outputs found
Adiabatic Control of Spin-Wave Propagation using Magnetisation Gradients
Spin waves are of large interest as data carriers for future logic devices.
However, due to the strong anisotropic dispersion relation of dipolar
spin-waves in in-plane magnetised films the realisation of two-dimensional
information transport remains a challenge. Bending of the energy flow is
prohibited since energy and momentum of spin waves cannot be conserved while
changing the direction of wave propagation. Thus, non-linear or non-stationary
mechanisms are usually employed. Here, we propose to use reconfigurable
laser-induced magnetisation gradients to break the system's translational
symmetry. The resulting changes in the magnetisation shift the dispersion
relations locally and allow for operating with different spin-wave modes at the
same frequency. Spin-wave momentum is first transformed via refraction at the
edge of the magnetisation gradient region and then adiabatically modified
inside it. Along these lines the spin-wave propagation direction can be
controlled in a broad frequency range with high efficiency
Microservice Transition and its Granularity Problem: A Systematic Mapping Study
Microservices have gained wide recognition and acceptance in software
industries as an emerging architectural style for autonomic, scalable, and more
reliable computing. The transition to microservices has been highly motivated
by the need for better alignment of technical design decisions with improving
value potentials of architectures. Despite microservices' popularity, research
still lacks disciplined understanding of transition and consensus on the
principles and activities underlying "micro-ing" architectures. In this paper,
we report on a systematic mapping study that consolidates various views,
approaches and activities that commonly assist in the transition to
microservices. The study aims to provide a better understanding of the
transition; it also contributes a working definition of the transition and
technical activities underlying it. We term the transition and technical
activities leading to microservice architectures as microservitization. We then
shed light on a fundamental problem of microservitization: microservice
granularity and reasoning about its adaptation as first-class entities. This
study reviews state-of-the-art and -practice related to reasoning about
microservice granularity; it reviews modelling approaches, aspects considered,
guidelines and processes used to reason about microservice granularity. This
study identifies opportunities for future research and development related to
reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table