59 research outputs found

    Contrast-induced nephropathy.

    Get PDF
    Radiological procedures utilizing intravascular iodinated contrast media are being widely applied for both diagnostic and therapeutic purposes and represent one of the main causes of contrast-induced nephropathy (CIN) and hospital-acquired renal failure. Due to the lack of any effective treatment, prevention of this iatrogenic disease, which is associated with significant in-hospital and long-term morbidity and mortality and increased costs, is the key strategy. However, prevention of CIN continues to elude clinicians and is a major concern during percutaneous coronary interventions (PCI), as patients undergoing these procedures often have multiple comorbidities. The purpose of this article is to examine the pathophysiology, risk factors, and clinical course of CIN, as well as the most recent studies dealing with its prevention and potential therapeutic interventions, especially during PCI

    The Physiologic Benefits of Optimizing Cardiorespiratory Fitness and Physical Activity – From the Cell to Systems Level in a Post-Pandemic World

    Get PDF
    Cardiovascular (CV) disease (CVD) is a leading cause of premature death and hospitalization which places a significant strain on health services and economies around the World. Evidence from decades of empirical and observational research demonstrates clear associations between physical activity (PA) and cardiorespiratory fitness (CRF) which can offset the risk of mortality and increase life expectancy and the quality of life in patients. Whilst well documented, the narrative of increased CRF remained pertinent during the coronavirus disease 2019 (COVID-19) pandemic, where individuals with lower levels of CRF had more than double the risk of dying from COVID-19 compared to those with a moderate or high CRF. The need to better understand the mechanisms associated with COVID-19 and those that continue to be affected with persistent symptoms following infection (Long COVID), and CV health is key if we are to be able to effectively target the use of CRF and PA to improve the lives of those suffering its afflictions. Whilst there is a long way to go to optimise PA and CRF for improved health at a population level, particularly in a post-pandemic world, increasing the understanding using a cellular-to-systems approach, we hope to provide further insight into the benefits of engaging in PA

    Association between serum keptin concentrations and insulin resistance: A population-based study from China

    Get PDF
    BACKGROUND Insulin resistance contributes to the cardio-metabolic risk. The effect of leptin in obese and overweight population on insulin resistance was seldom reported. METHODS A total of 1234 subjects (572 men and 662 women) aged ≥18 y was sampled by the procedure. Adiposity measures included BMI, waist circumference, hip circumference, WHR, upper arm circumference, triceps skinfold and body fat percentage. Serum leptin concentrations were measured by an ELISA method. The homeostasis model (HOMA-IR) was applied to estimate insulin resistance. RESULTS In men, BMI was the variable which was most strongly correlated with leptin, whereas triceps skinfold was most sensitive for women. More importantly, serum leptin levels among insulin resistant subjects were almost double compared to the subjects who had normal insulin sensitivity at the same level of adiposity in both men and women, after controlling for potential confounders. In addition, HOMA-IR increased significantly across leptin quintiles after adjustment for age, BMI, total energy intake, physical activity and smoking status in both men and women (p for trend <0.0001). CONCLUSIONS There was a significant association between HOMA-IR and serum leptin concentrations in Chinese men and women, independently of adiposity levels. This may suggest that serum leptin concentration is an important predictor of insulin resistance and other metabolic risks irrespective of obesity levels. Furthermore, leptin levels may be used to identify the cardio-metabolic risk in obese and overweight population.Hui Zuo, Zumin Shi, Baojun Yuan, Yue Dai, Gaolin Wu, Akhtar Hussai

    Numerical investigation into the blasting-induced damage characteristics of rocks considering the role of in-situ stresses and discontinuity persistence

    Get PDF
    This paper presents a 3D coupled Smoothed Particle Hydrodynamics (SPH) and Finite Element Method (FEM) model, which was developed to investigate the extent of damage zone and fracture patterns in rock due to blasting. The RHT material model was used to simulate the blasting-induced damage in rock. The effects of discontinuity persistence and high in-situ stresses on the evolution of blasting-induced damage were investigated. Results of this study indicate that discontinuity persistence and spatial distribution of rock bridges have a significant influence on the evolution of blasting-induced damage. Furthermore, high in-situ stresses also have a significant influence on the propagation of blasting-induced fractures, as well as the patterns of fracture networks. It is also shown that the blasting-induced cracks are often induced along the direction of the applied high initial stresses. Moreover, additional cracks are normally generated at the edges of the rock bridges probably due to the relatively high stress concentration. ďż˝ 2019 Elsevier Lt

    Computer simulation of underground blast response of pile in saturated soil

    No full text
    This paper treats the blast response of a pile foundation in saturated sand using explicit nonlinear finite element analysis, considering complex material behavior of soil and soil–pile interaction. Blast wave propagation in the soil is studied and the horizontal deformation of pile and effective stresses in the pile are presented. Results indicate that the upper part of the pile to be vulnerable and the pile response decays with distance from the explosive. The findings of this research provide valuable information on the effects of underground explosions on pile foundation and will guide future development, validation and application of computer models.Accepted versio

    Pile response subjected to rock blasting induced ground vibration near soil-rock interface

    No full text
    Blasting has been widely used in mining and construction industries for rock breaking. Ground vibration induced by blasting is an inevitable side effect that may cause damage to nearby structures, if not properly controlled. In this study, response and possible damage of rock-socketed pile near soil-rock interface subjected to ground shock excitations are investigated and quantified with coupled SPH-FEM method. Results indicate that the base of the pile is relatively vulnerable and that the soil properties significantly influence on response of pile subjected to a specific blast load. Furthermore, based on the numerical results, ground vibration attenuation equation is proposed.NRF (Natl Research Foundation, S’pore)Accepted versio
    • …
    corecore