87,968 research outputs found
Mesure de température par pyrométrie 2D à bande spectrale et pyrométrie spectrale de métaux chauffés par laser dans un environnement fortement oxydant
La calibration et la validation de deux techniques de mesure de température complémentaires basées toutes les deux sur la pyrométrie optique (pyrométrie 2D monobande et pyrométrie spectrale), utilisables dans le cadre de l'étude des métaux chauffés dans des conditions hautement oxydantes et plus généralement au cours des procédés laser sur des métaux dans la gamme de température 2000-4000 K ont été réalisées. Une bonne correspondance des résultats des deux méthodes est obtenue lorsque l'émissivité de l'objet est connue et varie peu, mais seule la pyrométrie spectrale est performante lors de grandes variations d'émissivité, fournissant à la fois une mesure de température et d'émissivité au cours du procédé. Les incertitudes ont été calculées et représentent respectivement 6 et 3% dans une gamme de 1800 à 4500 K pour la pyrométrie 2D et la pyrométrie spectrale
Experiments with document archive size detection
The size of a document archive is a very important parameter for resource selection in distributed information retrieval systems. In this paper, we present a method for automatically detecting the size (ie the number of documents) of a document archive, in case the archive itself does not provide such information. In addition, a method for detecting incremental change of the archive size is also presented, which can be useful for deciding if a resource description has become obsolete and needs to be regenerated. An experimental evaluation of these methods shows that they provide quite acurate information
Semiclassical Analysis of the Wigner Symbol with One Small Angular Momentum
We derive an asymptotic formula for the Wigner symbol, in the limit of
one small and 11 large angular momenta. There are two kinds of asymptotic
formulas for the symbol with one small angular momentum. We present the
first kind of formula in this paper. Our derivation relies on the techniques
developed in the semiclassical analysis of the Wigner symbol [L. Yu and R.
G. Littlejohn, Phys. Rev. A 83, 052114 (2011)], where we used a gauge-invariant
form of the multicomponent WKB wave-functions to derive asymptotic formulas for
the symbol with small and large angular momenta. When applying the same
technique to the symbol in this paper, we find that the spinor is
diagonalized in the direction of an intermediate angular momentum. In addition,
we find that the geometry of the derived asymptotic formula for the
symbol is expressed in terms of the vector diagram for a symbol. This
illustrates a general geometric connection between asymptotic limits of the
various symbols. This work contributes the first known asymptotic formula
for the symbol to the quantum theory of angular momentum, and serves as a
basis for finding asymptotic formulas for the Wigner symbol with two
small angular momenta.Comment: 15 pages, 14 figure
Semiclassical Analysis of the Wigner -Symbol with Small and Large Angular Momenta
We derive a new asymptotic formula for the Wigner -symbol, in the limit
of one small and eight large angular momenta, using a novel gauge-invariant
factorization for the asymptotic solution of a set of coupled wave equations.
Our factorization eliminates the geometric phases completely, using
gauge-invariant non-canonical coordinates, parallel transports of spinors, and
quantum rotation matrices. Our derivation generalizes to higher -symbols.
We display without proof some new asymptotic formulas for the -symbol and
the -symbol in the appendices. This work contributes a new asymptotic
formula of the Wigner -symbol to the quantum theory of angular momentum,
and serves as an example of a new general method for deriving asymptotic
formulas for -symbols.Comment: 18 pages, 16 figures. To appear in Phys. Rev.
Asymptotics of Wigner 3nj-symbols with Small and Large Angular Momenta: an Elementary Method
Yu and Littlejohn recently studied in arXiv:1104.1499 some asymptotics of
Wigner symbols with some small and large angular momenta. They found that in
this regime the essential information is captured by the geometry of a
tetrahedron, and gave new formulae for 9j, 12j and 15j-symbols. We present here
an alternative derivation which leads to a simpler formula, based on the use of
the Ponzano-Regge formula for the relevant tetrahedron. The approach is
generalized to Wigner 3nj-symbols with some large and small angular momenta,
where more than one tetrahedron is needed, leading to new asymptotics for
Wigner 3nj-symbols. As an illustration, we present 15j-symbols with one, two
and four small angular momenta, and give an alternative formula to Yu's recent
15j-symbol with three small spins.Comment: 17 page
- …
