198 research outputs found
Inverse scattering problem for quantum graph vertices
We demonstrate how the inverse scattering problem of a quantum star graph can be solved by means of diagonalization of the Hermitian unitary matrix when the vertex coupling is of the scale-invariant (or Fülöp-Tsutsui) form. This enables the construction of quantum graphs with desired properties in a tailor-made fashion. The procedure is illustrated on the example of quantum vertices with equal transmission probabilities
Review of SIS Experimental Results on Strangeness
>A review of meson emission in heavy ion collisions at incident energies
around 1 -- 2 GeV is presented. It is shown how the shape of the
spectra and the various particle yields vary with system size, with centrality
and with incident energy. A statistical model assuming thermal and chemical
equilibrium and exact strangeness conservation (i.e. strangeness conservation
per collision) explains most of the observed features.
Emphasis is put onto the study of and emission. In the framework
of this statistical model it is shown that the experimentally observed equality
of and rates at threshold corrected energies is due to a crossing of two excitation functions. Furthermore,
the independence of the to ratio on the number of participating
nucleons observed between 1 and 10 GeV is consistent with this model.
The observed flow effects are beyond the scope of this model.Comment: 10 pages, 9 figures, Strangeness 2000, V International Conference on
Strangeness in Quark Matter, July, 2000, Berkeley, Californi
The strange-quark chemical potential as an experimentally accessible "order parameter" of the deconfinement phase transition for finite baryon-density
We consider the change of the strange-quark chemical potential in the phase
diagram of nuclear matter, employing the Wilson loop and scalar quark
condensate order parameters, mass-scaled partition functions and enforcing
flavor conservation. Assuming the region beyond the hadronic phase to be
described by massive, correlated and interacting quarks, in the spirit of
lattice and effective QCD calculations, we find the strange-quark chemical
potential to change sign: from positive in the hadronic phase - to zero upon
deconfinement - to negative in the partonic domain. We propose this change in
the sign of the strange-quark chemical potential to be an experimentally
accessible order parameter and a unique, concise and well-defined indication of
the quark-deconfinement phase transition in nuclear matter.Comment: 22 pages, 14 figures within text, 2 figures(6,B3) as separate files.
To be published in J.Phys.G: Nucl.&Part.Phys. G28 (2002
- …
