1,426 research outputs found
A global foliation of Einstein-Euler spacetimes with Gowdy-symmetry on T3
We investigate the initial value problem for the Einstein-Euler equations of
general relativity under the assumption of Gowdy symmetry on T3, and we
construct matter spacetimes with low regularity. These spacetimes admit, both,
impulsive gravitational waves in the metric (for instance, Dirac mass curvature
singularities propagating at light speed) and shock waves in the fluid (i.e.,
discontinuities propagating at about the sound speed). Given an initial data
set, we establish the existence of a future development and we provide a global
foliation in terms of a globally and geometrically defined time-function,
closely related to the area of the orbits of the symmetry group. The main
difficulty lies in the low regularity assumed on the initial data set which
requires a distributional formulation of the Einstein-Euler equations.Comment: 24 page
The nuclear shell effects near the r-process path in the relativistic Hartree-Bogoliubov theory
We have investigated the evolution of the shell structure of nuclei in going
from the r-process path to the neutron drip line within the framework of the
Relativistic Hartree-Bogoliubov (RHB) theory. By introducing the quartic
self-coupling of meson in the RHB theory in addition to the non-linear
scalar coupling of meson, we reproduce the available data on the shell
effects about the waiting-point nucleus Zn. With this approach, it is
shown that the shell effects at N=82 in the inaccessible region of the
r-process path become milder as compared to the Lagrangian with the scalar
self-coupling only. However, the shell effects remain stronger as compared to
the quenching exhibited by the HFB+SkP approach. It is also shown that in
reaching out to the extreme point at the neutron drip line, a terminal
situation arises where the shell structure at the magic number is washed out
significantly.Comment: 18 pages (revtex), 8 ps figures, to appear in Phys. Rev.
The structure of superheavy elements newly discovered in the reaction of Kr with Pb
The structure of superheavy elements newly discovered in the
Pb(Kr,n) reaction at Berkeley is systematically studied in the
Relativistic Mean Field (RMF) approach. It is shown that various usually
employed RMF forces, which give fair description of normal stable nuclei, give
quite different predictions for superheavy elements. Among the effective forces
we tested, TM1 is found to be the good candidate to describe superheavy
elements. The binding energies of the 118 nucleus and its
decay daughter nuclei obtained using TM1 agree with those of FRDM
within 2 MeV. Similar conclusion that TM1 is the good interaction is also drawn
from the calculated binding energies for Pb isotopes with the Relativistic
Continuum Hartree Bogoliubov (RCHB) theory. Using the pairing gaps obtained
from RCHB, RMF calculations with pairing and deformation are carried out for
the structure of superheavy elements. The binding energy, shape, single
particle levels, and the Q values of the decay are
discussed, and it is shown that both pairing correlation and deformation are
essential to properly understand the structure of superheavy elements. A good
agreement is obtained with experimental data on . %Especially, the
atomic number %dependence of %seems to match with the experimental
observationComment: 19 pages, 5 figure
Random walk on the range of random walk
We study the random walk X on the range of a simple random walk on ℤ d in dimensions d≥4. When d≥5 we establish quenched and annealed scaling limits for the process X, which show that the intersections of the original simple random walk path are essentially unimportant. For d=4 our results are less precise, but we are able to show that any scaling limit for X will require logarithmic corrections to the polynomial scaling factors seen in higher dimensions. Furthermore, we demonstrate that when d=4 similar logarithmic corrections are necessary in describing the asymptotic behavior of the return probability of X to the origin
Space-Time Distribution of G-Band and Ca II H-Line Intensity Oscillations in Hinode/SOT-FG Observations
We study the space-time distributions of intensity fluctuations in 2 - 3 hour
sequences of multi-spectral, high-resolution, high-cadence broad-band
filtergram images (BFI) made by the SOT-FG system aboard the Hinode spacecraft.
In the frequency range 5.5 < f < 8.0 mHz both G-band and Ca II H-line
oscillations are suppressed in the presence of magnetic fields, but the
suppression disappears for f > 10 mHz. By looking at G-band frequencies above
10 mHz we find that the oscillatory power, both at these frequencies and at
lower frequencies too, lies in a mesh pattern with cell scale 2 - 3 Mm, clearly
larger than normal granulation, and with correlation times on the order of
hours. The mesh pattern lies in the dark lanes between stable cells found in
time-integrated G-band intensity images. It also underlies part of the bright
pattern in time-integrated H-line emission. This discovery may reflect
dynamical constraints on the sizes of rising granular convection cells together
with the turbulence created in strong intercellular downflows.Comment: 24 pages, 15 figure
Regularization of point vortices for the Euler equation in dimension two
In this paper, we construct stationary classical solutions of the
incompressible Euler equation approximating singular stationary solutions of
this equation.
This procedure is carried out by constructing solutions to the following
elliptic problem [ -\ep^2 \Delta
u=(u-q-\frac{\kappa}{2\pi}\ln\frac{1}{\ep})_+^p, \quad & x\in\Omega, u=0, \quad
& x\in\partial\Omega, ] where , is a bounded
domain, is a harmonic function.
We showed that if is simply-connected smooth domain, then for any
given non-degenerate critical point of Kirchhoff-Routh function
with the same strength , there is a
stationary classical solution approximating stationary points vortex
solution of incompressible Euler equations with vorticity .
Existence and asymptotic behavior of single point non-vanishing vortex
solutions were studied by D. Smets and J. Van Schaftingen (2010).Comment: 32page
Nuclear Ground State Observables and QCD Scaling in a Refined Relativistic Point Coupling Model
We present results obtained in the calculation of nuclear ground state
properties in relativistic Hartree approximation using a Lagrangian whose
QCD-scaled coupling constants are all natural (dimensionless and of order 1).
Our model consists of four-, six-, and eight-fermion point couplings (contact
interactions) together with derivative terms representing, respectively, two-,
three-, and four-body forces and the finite ranges of the corresponding mesonic
interactions. The coupling constants have been determined in a self-consistent
procedure that solves the model equations for representative nuclei
simultaneously in a generalized nonlinear least-squares adjustment algorithm.
The extracted coupling constants allow us to predict ground state properties of
a much larger set of even-even nuclei to good accuracy. The fact that the
extracted coupling constants are all natural leads to the conclusion that QCD
scaling and chiral symmetry apply to finite nuclei.Comment: 44 pages, 13 figures, 9 tables, REVTEX, accepted for publication in
Phys. Rev.
Observed Effect of Magnetic Fields on the Propagation of Magnetoacoustic Waves in the Lower Solar Atmosphere
We study Hinode/SOT-FG observations of intensity fluctuations in Ca II H-line
and G-band image sequences and their relation to simultaneous and co-spatial
magnetic field measurements. We explore the G-band and H-line intensity
oscillation spectra both separately and comparatively via their relative phase
differences, time delays and cross-coherences. In the non-magnetic situations,
both sets of fluctuations show strong oscillatory power in the 3 - 7 mHz band
centered at 4.5 mHz, but this is suppressed as magnetic field increases. A
relative phase analysis gives a time delay of H-line after G-band of 20\pm1 s
in non-magnetic situations implying a mean effective height difference of 140
km. The maximum coherence is at 4 - 7 mHz. Under strong magnetic influence the
measured delay time shrinks to 11 s with the peak coherence near 4 mHz. A
second coherence maximum appears between 7.5 - 10 mHz. Investigation of the
locations of this doubled-frequency coherence locates it in diffuse rings
outside photospheric magnetic structures. Some possible interpretations of
these results are offered.Comment: 19 pages, 6 figure
Giant vortex state in perforated aluminum microsquares
We investigate the nucleation of superconductivity in a uniform perpendicular
magnetic field H in aluminum microsquares containing a few (2 and 4) submicron
holes (antidots). The normal/superconducting phase boundary T_c(H) of these
structures shows a quite different behavior in low and high fields. In the low
magnetic field regime fluxoid quantization around each antidot leads to
oscillations in T_c(H), expected from the specific sample geometry, and
reminiscent of the network behavior. In high magnetic fields, the T_c(H)
boundaries of the perforated and a reference non-perforated microsquare reveal
cusps at the same values of Phi/Phi_0 (where Phi is the applied flux threading
the total square area and Phi_0 is the superconducting flux quantum), while the
background on T_c(H) becomes quasi-linear, indicating that a giant vortex state
is established. The influence of the actual geometries on T_c(H) is analyzed in
the framework of the linearized Ginzburg-Landau theory.Comment: 14 pages, 6 PS figures, RevTex, accepted for publication in Phys.
Rev.
- …