244 research outputs found

    Linear Einstein equations and Kerr-Schild maps

    Get PDF
    We prove that given a solution of the Einstein equations gabg_{ab} for the matter field TabT_{ab}, an autoparallel null vector field lal^{a} and a solution (lalc,Tac)(l_{a}l_{c}, \mathcal{T}_{ac}) of the linearized Einstein equation on the given background, the Kerr-Schild metric gac+λlalcg_{ac}+\lambda l_{a}l_{c} (λ\lambda arbitrary constant) is an exact solution of the Einstein equation for the energy-momentum tensor Tac+λTac+λ2l(aTc)blbT_{ac}+\lambda \mathcal{T}_{ac}+\lambda ^{2}l_{(a}\mathcal{T}_{c)b}l^{b}. The mixed form of the Einstein equation for Kerr-Schild metrics with autoparallel null congruence is also linear. Some more technical conditions hold when the null congruence is not autoparallel. These results generalize previous theorems for vacuum due to Xanthopoulos and for flat seed space-time due to G\"{u}rses and G\"{u}rsey.Comment: 9 pages, accepted by Class. Quant. Gra

    Is Quantum Mechanics Compatible with an Entirely Deterministic Universe?

    Get PDF
    A b s t r a c t It will be argued that 1) the Bell inequalities are not equivalent with those inequalities derived by Pitowsky and others that indicate the Kolmogorovity of a probability model, 2) the original Bell inequalities are irrelevant to both the question of whether or not quantum mechanics is a Kolmogorovian theory as well as the problem of determinism, whereas 3) the Pitowsky type inequalities are not violated by quantum mechanics, hence 4) quantum mechanics is a Kolmogorovian probability theory, therefore, 5) it is compatible with an entirely deterministic universe.Comment: 15 pages, (compressed and uuencoded) Postscript (188 kb), preprint 94/0

    Testing Newtonian Gravity with AAOmega: Mass-to-Light Profiles of Four Globular Clusters

    Full text link
    Testing Newtonian gravity in the weak-acceleration regime is vital to our understanding of the nature of the gravitational interaction. It has recently been claimed that the velocity dispersion profiles of several globular clusters flatten out at large radii, reminiscent of galaxy rotation curves, even though globular clusters are thought to contain little or no dark matter. We investigate this claim, using AAOmega observations of four globular clusters, namely M22, M30, M53 and M68. M30, one such cluster that has had this claim made for its velocity dispersion, was included for comparison with previous studies. We find no statistically significant flattening of the velocity dispersion at large radii for any of our target clusters and therefore we infer the observed dynamics do not require that globular clusters are dark matter dominated, or a modification of gravity. Furthermore, by applying a simple dynamical model we determine the radial mass-to-light profiles for each cluster. The isothermal rotations of each cluster are also measured, with M22 exhibiting clear rotation, M68 possible rotation and M30 and M53 lacking any rotation, within the uncertainties.Comment: 7 pages, 4 figures and two tables. Accepted by MNRA

    On the roots of the Poincare structure of asymptotically flat spacetimes

    Full text link
    The analysis of vacuum general relativity by R. Beig and N. O Murchadha (Ann. Phys. vol 174, 463 (1987)) is extended in numerous ways. The weakest possible power-type fall-off conditions for the energy-momentum tensor, the metric, the extrinsic curvature, the lapse and the shift are determined, which, together with the parity conditions, are preserved by the energy-momentum conservation and the evolution equations. The algebra of the asymptotic Killing vectors, defined with respect to a foliation of the spacetime, is shown to be the Lorentz Lie algebra for slow fall-off of the metric, but it is the Poincare algebra for 1/r or faster fall-off. It is shown that the applicability of the symplectic formalism already requires the 1/r (or faster) fall-off of the metric. The connection between the Poisson algebra of the Beig-O Murchadha Hamiltonians and the asymptotic Killing vectors is clarified. The value H[K^a] of their Hamiltonian is shown to be conserved in time if K^a is an asymptotic Killing vector defined with respect to the constant time slices. The angular momentum and centre-of-mass, defined by the value of H[K^a] for asymptotic rotation-boost Killing vectors K^a, are shown to be finite only for 1/r or faster fall-off of the metric. Our center-of-mass expression is the difference of that of Beig and O Murchadha and the spatial momentum times the coordinate time. The spatial angular momentum and this centre-of-mass form a Lorentz tensor, which transforms in the correct way under Poincare transformations.Comment: 34 pages, plain TEX, misleading notations changed, discussion improved and corrected, appearing in Class. Quantum Gra

    Barriers to psychological help-seeking in young men who have attempted suicide : an interpretative phenomenological analysis

    Get PDF
    The current paper reviews literature on help-seeking in relation to suicide and attempted suicide. An overview of the extensive research into risk factors associated with suicide is given highlighting the link between mental health problems and suicide. A minority of people with mental health problems seek professional help and even fewer people will go on to receive help from specialist mental health services. The same pattern is seen in those at risk of suicide. The majority will not be receiving specialist support at the time of their death although about half will have had recent contact with their GP. Reasons for not seeking help in times of emotional distress are discussed. Finally, clinical implications arising from the literature are addressed and suggestions are made for future research
    corecore