24 research outputs found

    Channel-embedded Implantable Microchip with Fibrosis Suppression for Reproducible and Controlled Drug Delivery

    Get PDF
    Channel-embedded implantable microchips for drug delivery have attracted as they can deliver drugs in a linear manner, which is considered an optimal regimen for drugs such as non-steroidal anti-inflammatory drugs (NSAIDs). However, the longevity of dose reproducibility could not be guaranteed due to fibrotic capsule formation around the implanted microchip. To resolve this, we proposed a microchip enabled with suppression of fibrosis by sustained release of an anti-fibrotic drug, tranilast. For this, integrated microchip (i.e., I_MC) was prepared by assembling two distinct constituent microchips of circular shape, each of which was designed to release a NSAID to be systemically exposed, diclofenac, and an antifibrotic drug, tranilast, respectively (i.e., DMC and TMC). The DMC and TMC were each made of a biocompatible polymer, poly (methyl methacrylate) (PMMA), where two compartments, a drug reservoir and micro-channel, were prepared with CO2 laser, for sustained drug release. The drug reservoir was densely filled with fine powder of diclofenac or tranilast. The micro-channel was filled with molten poly (ethylene glycol) (PEG) and hardened to serve as drug diffusion barrier. The dimension of the micro-channel was controlled for both rapid onset and sustained release of drugs. To find an optimum length of channel for I_MC, the length of the channel was varied to 2 mm (i.e., DMC_2), 3 mm (i.e., DMC_3) and 4 mm (i.e., DMC_4) for DMC, and 2 mm (i.e., TMC_2) and 3 mm (i.e., TMC_3) for TMC. To assess the drug release according to the length of the channel, the cross-sectional area of the channel was fixed as 0.366 ยฑ 0.032 mm2. Through the in vitro drug release experiment for 32 days, the optimum length of the channel was determined for I_MC to be implanted. As DMC_3 exhibited the largest daily release amount in a reproducible manner, the length of the channels to be embedded on the DMC composing I_MC was determined to be 3 mm. To achieve enough daily diclofenac release amount for pharmacokinetics study, two pairs of channels and drug reservoirs were embedded on DMC, giving 2X_DMC_3. And release amount of tranilast required for effective suppression of fibrosis was estimated based on the surface area of I_MC. To accomplish this estimation, a pair of channel and drug reservoir in TMC_2, which exhibited the largest daily release amount of tranilast was doubled to give 2X_TMC_2. I_MC which was fabricated by assembling 2X_DMC_3 and 2X_TMC_2, was implanted in living rat to assess the in vivo performance. To evaluate the effect of sustained release of tranilast on dose reproducibility, the concentration of diclofenac in blood was compared in both groups, each of which was implanted with I_MC loaded with diclofenac and tranilast (i.e., I_MC w/ TR), or I_MC loaded without tranilast (i.e., I_MC w/o TR). For the first 12 days, the concentration of diclofenac in blood was observed to be maintained within narrow range, due to zero-order release of diclofenac from the I_MC. From the 18 days after implantation, the concentration of diclofenac in blood was measured to be significantly higher in I_MC w/ TR than in I_MC w/o TR, indicating that dose reproducibility of diclofenac was improved through sustained release of tranilast. In the entire experiment, the concentration of tranilast in blood was maintained at low level, which was not sufficient to be therapeutically effective. To assess the histological effect of sustained release of tranilast, tissues formed around the I_MC were biopsied from both groups. The capsule thickness and the collagen density were measured using H&E staining and MT staining, respectively. The capsule thickness and collagen density were significantly smaller and lower in I_MC w/ TR than in I_MC w/o TR (p < 0.05). Through this study, the microchip enabled to suppress formation of fibrotic capsule for prolonged dose reproducibility was suggested. The microchip reduced capsule thickness and collagen density by sustained release of tranilast, leading to improved dose reproducibility of model drug, diclofenac. Due to its small size and controllability of drug release, the microchip releasing tranilast can be simply applied to other implantable microchip requiring suppression of fibrosis for prolonged dose reproducibility.์ด์‹ํ˜• ๋งˆ์ดํฌ๋กœ ์นฉ์€ ๋‚ด์žฅ๋œ ์ฑ„๋„์„ ํ†ตํ•ด ์„ ํ˜•์ ์œผ๋กœ ์•ฝ๋ฌผ์„ ์ „๋‹ฌํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํ˜ˆ์ค‘ ์•ฝ๋ฌผ ๋†๋„๋ฅผ ์ผ์ • ์ˆ˜์ค€์œผ๋กœ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ์–ด ๋น„์Šคํ…Œ๋กœ์ด๋“œ์„ฑ ํ•ญ์—ผ์ฆ์ œ๋ฅผ ์ „๋‹ฌํ•˜๋Š”๋ฐ ์ ํ•ฉํ•œ ๋ฐฉ์‹์œผ๋กœ ์ฃผ๋ชฉ ๋ฐ›๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด์‹ ํ›„, ๋งˆ์ดํฌ๋กœ ์นฉ ์ฃผ๋ณ€์— ํ˜•์„ฑ๋˜๋Š” ๋‘๊ป๊ณ  ๋‹จ๋‹จํ•œ ์„ฌ์œ ์„ฑ ์บก์Š์ด ๋งˆ์ดํฌ๋กœ ์นฉ์—์„œ ๋ฐฉ์ถœ๋œ ์•ฝ๋ฌผ์ด ์ „์‹ ์œผ๋กœ ํผ์ง€๋Š” ๊ฒƒ์„ ๋ฐฉํ•ดํ•˜์—ฌ ์•ฝ๋ฌผ ์ „๋‹ฌ์˜ ์žฌํ˜„์„ฑ์ด ์ €ํ•˜๋˜๋Š” ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์„ฌ์œ ์„ฑ ์บก์Š์˜ ํ˜•์„ฑ์„ ์–ต์ œํ•˜์—ฌ ์•ฝ๋ฌผ ์ „๋‹ฌ์˜ ์žฅ๊ธฐ์  ์žฌํ˜„์„ฑ์„ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋Š” ๋งˆ์ดํฌ๋กœ ์นฉ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋Œ€ํ‘œ์ ์ธ ๋น„์Šคํ…Œ๋กœ์ด๋“œ์„ฑ ํ•ญ์—ผ์ฆ์ œ์ธ ๋””ํด๋กœํŽ˜๋‚™์„ ๋ฐฉ์ถœํ•˜๋Š” ๋งˆ์ดํฌ๋กœ ์นฉ (Diclofenac Microchip, DMC)๊ณผ TGF-ฮฒ๋ฅผ ์–ต์ œํ•˜๋Š” ํ•ญ์„ฌ์œ ํ™” ์•ฝ๋ฌผ์ธ ํŠธ๋ผ๋‹๋ผ์ŠคํŠธ๋ฅผ ๋ฐฉ์ถœํ•˜๋Š” ๋งˆ์ดํฌ๋กœ ์นฉ (Tranilast microchip, TMC)์„ ๊ฒฐํ•ฉํ•˜์—ฌ ์ตœ์ข… ํ˜•ํƒœ์˜ ๋งˆ์ดํฌ๋กœ ์นฉ (Integrated Microchip, I_MC)์„ ์ œ์ž‘ํ•˜์˜€๋‹ค. ๋””ํด๋กœํŽ˜๋‚™์€ ํ˜ˆ์•ก์„ ํ†ตํ•ด ์ „์‹ ์œผ๋กœ ์ „๋‹ฌ๋˜์–ด ์•ฝ๋ฌผ ์ „๋‹ฌ์˜ ์žฌํ˜„์„ฑ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•œ ๋ชจ๋ธ ์•ฝ๋ฌผ์ด๊ณ , ํŠธ๋ผ๋‹๋ผ์ŠคํŠธ๋Š” ๋งˆ์ดํฌ๋กœ ์นฉ ์ฃผ๋ณ€์— ์ž‘์šฉํ•˜์—ฌ ์„ฌ์œ ์„ฑ ์บก์Š์˜ ํ˜•์„ฑ์„ ์–ต์ œํ•˜๊ธฐ ์œ„ํ•œ ๋ชฉ์ ์œผ๋กœ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๊ฐ ๋งˆ์ดํฌ๋กœ ์นฉ์€ ์ €์žฅ๊ณ ์— ๋‹ด๊ธด ์•ฝ๋ฌผ์„ ๋งˆ์ดํฌ๋กœ ์ฑ„๋„์„ ํ†ตํ•ด ์„œ์„œํžˆ ๋ฐฉ์ถœํ•˜๋Š” ๊ตฌ์กฐ๋กœ ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ตœ์ข… ๋งˆ์ดํฌ๋กœ ์นฉ์— ์ ํ•ฉํ•œ ์ฑ„๋„ ์กฐ๊ฑด์„ ๊ฒฐ์ •ํ•˜๊ธฐ ์œ„ํ•ด ์•ฝ๋ฌผ ๋ฐฉ์ถœ ์‹คํ—˜์„ ํ†ตํ•ด ์ตœ์ ์˜ ์ฑ„๋„ ๊ธธ์ด์™€ ์ฑ„๋„ ๋ฐ ์•ฝ๋ฌผ ์ €์žฅ๊ณ  ์Œ์˜ ๊ฐœ์ˆ˜๋ฅผ ๊ฒฐ์ •ํ•˜์˜€๋‹ค. ์ฑ„๋„ ๊ธธ์ด๋ฅผ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋‹จ๋ฉด์ ์„ ๋™์ผํ•˜๊ฒŒ ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๊ธธ์ด์˜ ์ฑ„๋„์ด ๋‚ด์žฅ๋œ ๋งˆ์ดํฌ๋กœ ์นฉ์„ ์ œ์ž‘ํ•˜์˜€๋‹ค. DMC์˜ ์ฑ„๋„์€ 2 mm (DMC_2), 3 mm (DMC_3) ๋ฐ 4 mm (DMC_4) ๊ธธ์ด๋กœ ์ œ์ž‘ํ•˜์˜€๊ณ , TMC์˜ ์ฑ„๋„์€ 2 mm (TMC_2) ๋ฐ 3 mm (TMC_3) ๊ธธ์ด๋กœ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์ด ๋งˆ์ดํฌ๋กœ ์นฉ์„ ์ด์šฉํ•œ 32์ผ ๊ฐ„์˜ in vitro ์•ฝ๋ฌผ ๋ฐฉ์ถœ ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ I_MC๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ์ฑ„๋„์˜ ๊ธธ์ด๋ฅผ ๊ฒฐ์ •ํ•˜์˜€๋‹ค. DMC_3๊ฐ€ ๋†’์€ ์žฌํ˜„์„ฑ๊ณผ ๋งŽ์€ ์•ฝ๋ฌผ ๋ฐฉ์ถœ๋Ÿ‰์„ ๋ณด์˜€๊ธฐ ๋•Œ๋ฌธ์— I_MC๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” DMC์˜ ์ฑ„๋„ ๊ธธ์ด๋ฅผ 3 mm๋กœ ๊ฒฐ์ •ํ•˜์˜€๋‹ค. ๋””ํด๋กœํŽ˜๋‚™์˜ ์•ฝ๋ฌผ ๋™๋ ฅํ•™ ์—ฐ๊ตฌ์— ์ถฉ๋ถ„ํ•œ ์ผ์ผ ์•ฝ๋ฌผ ๋ฐฉ์ถœ๋Ÿ‰์„ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด 3 mm ๊ธธ์ด์˜ ์ฑ„๋„๊ณผ ์•ฝ๋ฌผ ์ €์žฅ๊ณ ๋ฅผ ๋‘ ์Œ ๋‚ด์žฅํ•œ 2X_DMC_3๋ฅผ ์ œ์ž‘ํ•˜์—ฌ ์•ฝ๋ฌผ ๋ฐฉ์ถœ๋Ÿ‰์„ ์ฆ๊ฐ€์‹œ์ผฐ๋‹ค. ๋˜ํ•œ ํšจ๊ณผ์ ์ธ ์„ฌ์œ ํ™” ์–ต์ œ๋ฅผ ์œ„ํ•ด ํ‘œ๋ฉด์  ๋Œ€๋น„ ํ•„์š” ํŠธ๋ผ๋‹๋ผ์ŠคํŠธ ๋ฐฉ์ถœ๋Ÿ‰์„ ์˜ˆ์ƒํ•˜๊ณ , ์ด๋ฅผ ์ถฉ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๊ฐ€์žฅ ํฐ ํŠธ๋ผ๋‹๋ผ์ŠคํŠธ ๋ฐฉ์ถœ๋Ÿ‰์„ ๋ณด์ธ 2 mm ๊ธธ์ด์˜ ์ฑ„๋„๊ณผ ์•ฝ๋ฌผ ์ €์žฅ๊ณ ๋ฅผ ๋‘ ์Œ ๋‚ด์žฅํ•œ 2X_TMC_2๋ฅผ ์ œ์ž‘ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ 2X_DMC_3์™€ 2X_TMC_2๋ฅผ ๊ฒฐํ•ฉํ•˜์—ฌ I_MC๋ฅผ ์™„์„ฑํ•˜์˜€๋‹ค. I_MC์˜ ์•ฝ๋ฌผ ์ „๋‹ฌ ์žฌํ˜„์„ฑ์„ in vivo์ƒ์—์„œ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด 30์ผ ๋™์•ˆ I_MC๋ฅผ ๋™๋ฌผ์—๊ฒŒ ์ด์‹ํ•˜๊ณ  ์•ฝ๋ฌผ ๋™๋ ฅํ•™์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋น„๊ต๋ฅผ ์œ„ํ•ด ํŠธ๋ผ๋‹๋ผ์ŠคํŠธ์˜ ํƒ‘์žฌ ์—ฌ๋ถ€์— ๋”ฐ๋ผ ํŠธ๋ผ๋‹๋ผ์ŠคํŠธ์™€ ๋””ํด๋กœํŽ˜๋‚™์„ ๋ชจ๋‘ ํƒ‘์žฌํ•œ I_MC๋ฅผ ์ด์‹ํ•œ ๊ทธ๋ฃน (I_MC w/ TR)๊ณผ ๋””ํด๋กœํŽ˜๋‚™๋งŒ ํƒ‘์žฌํ•œ I_MC๋ฅผ ์ด์‹ํ•œ ๊ทธ๋ฃน (I_MC w/o TR)์œผ๋กœ ๋‚˜๋ˆ„์–ด ํ˜ˆ์ค‘ ๋””ํด๋กœํŽ˜๋‚™ ๋†๋„๋ฅผ ์ธก์ •ํ•˜์˜€๋‹ค. ์ด์‹ ํ›„ 12์ผ๊นŒ์ง€๋Š” ๋‘ ๊ทธ๋ฃน์—์„œ ํ˜ˆ์ค‘ ๋””ํด๋กœํŽ˜๋‚™ ๋†๋„์˜ ์ฐจ์ด๋ฅผ ๋ณด์ด์ง€ ์•Š๊ณ  ์ผ์ •ํ•˜๊ฒŒ ์œ ์ง€๋˜์—ˆ์œผ๋‚˜, ์ดํ›„ ํ˜ˆ์ค‘ ๋””ํด๋กœํŽ˜๋‚™ ๋†๋„๊ฐ€ ๊ฐ์†Œํ•˜๋ฉด์„œ ๊ทธ๋ฃน ๊ฐ„์— ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚˜๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค. ์ด์‹ 15์ผ ์ดํ›„๋ถ€ํ„ฐ I_MC w/o TR์—์„œ๋Š” ํ˜ˆ์ค‘ ๋””ํด๋กœํŽ˜๋‚™ ๋†๋„๊ฐ€ 1/4 ์ˆ˜์ค€์œผ๋กœ ๊ฐ์†Œํ•˜์˜€์œผ๋‚˜ I_MC w/ TR์—์„œ๋Š” ์ ˆ๋ฐ˜ ์ด์ƒ์„ ์œ ์ง€ํ•˜์˜€์œผ๋ฉฐ, 18์ผ ์ดํ›„๋ถ€ํ„ฐ๋Š” ๋‘ ๊ทธ๋ฃน ๊ฐ„์— ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๋ฅผ ๋ณด์˜€๋‹ค (p < 0.05). ์ด๋ฅผ ํ†ตํ•ด I_MC์—์„œ ์„œ์„œํžˆ ๋ฐฉ์ถœ๋˜๋Š” ํŠธ๋ผ๋‹๋ผ์ŠคํŠธ์— ์˜ํ•ด ๋””ํด๋กœํŽ˜๋‚™์˜ ์ „๋‹ฌ ์žฌํ˜„์„ฑ์ด ๊ฐœ์„ ๋˜์—ˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ „์ฒด ์‹คํ—˜ ๊ธฐ๊ฐ„๋™์•ˆ I_MC w/ TR ๊ทธ๋ฃน์˜ ํ˜ˆ์ค‘ ํŠธ๋ผ๋‹๋ผ์ŠคํŠธ ๋†๋„๋Š” ์ „์‹ ์— ์•ฝํšจ๋ฅผ ๋ฏธ์น˜๊ธฐ ์–ด๋ ค์šด ๋‚ฎ์€ ์ˆ˜์ค€์œผ๋กœ ์œ ์ง€๋˜์–ด I_MC์—์„œ ๋ฐฉ์ถœ๋œ ํŠธ๋ผ๋‹๋ผ์ŠคํŠธ๊ฐ€ ๊ตญ์†Œ์ ์ธ ํšจ๊ณผ๋งŒ์„ ๊ฐ€์กŒ์Œ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ํŠธ๋ผ๋‹๋ผ์ŠคํŠธ์˜ ๋ฐฉ์ถœ์ด ์„ฌ์œ ์„ฑ ์กฐ์ง ํ˜•์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ทธ๋ฃน์—์„œ ๋งˆ์ดํฌ๋กœ ์นฉ ์ฃผ๋ณ€์— ํ˜•์„ฑ๋œ ์กฐ์ง์„ ์ฑ„์ทจํ•˜์—ฌ Hematoxylin & Eosin (H&E) ์—ผ์ƒ‰๋ฒ•๊ณผ Massonโ€™s Trichrome (MT) ์—ผ์ƒ‰๋ฒ•์œผ๋กœ ์—ผ์ƒ‰ํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. ์„ฌ์œ ์„ฑ ์บก์Š ๋‘๊ป˜ ์ธก์ •์„ ์œ„ํ•œ H&E ์—ผ์ƒ‰ ์กฐ์ง ๋ถ„์„ ๊ฒฐ๊ณผ, I_MC w/ TR๊ทธ๋ฃน์—์„œ๋Š” I_MC w/o TR ๊ทธ๋ฃน์—์„œ ํ˜•์„ฑ๋œ ์„ฌ์œ ์„ฑ ์บก์Š์˜ ์•ฝ 1/4๋ฐฐ ๋‘๊ป˜์˜ ์–‡์€ ์บก์Š์ด ํ˜•์„ฑ๋˜์—ˆ๋‹ค. ๋˜ํ•œ MT ์—ผ์ƒ‰์„ ์ด์šฉํ•œ ์กฐ์ง ๋ถ„์„์—์„œ๋Š” I_MC w/ TR ๊ทธ๋ฃน์—์„œ ์ฑ„์ทจํ•œ ์กฐ์ง์ด I_MC w/o TR๊ทธ๋ฃน์˜ ์กฐ์ง์— ๋น„ํ•ด ์ ˆ๋ฐ˜ ์ดํ•˜์˜ ์ฝœ๋ผ๊ฒ ๋ฐ€๋„๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํŠธ๋ผ๋‹๋ผ์ŠคํŠธ๋ฅผ ๋ฐฉ์ถœํ•œ ๋งˆ์ดํฌ๋กœ ์นฉ์˜ ์ฃผ๋ณ€์—์„œ ์„ฌ์œ ํ™” ๋ฐ˜์‘์ด ์–ต์ œ๋˜์–ด ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋” ์–‡๊ณ  ์„ฑ๊ธด ์„ฌ์œ ์„ฑ ์บก์Š์ด ํ˜•์„ฑ๋˜์—ˆ์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์„ฌ์œ ํ™” ์–ต์ œ ๊ธฐ๋Šฅ์ด ์žˆ๋Š” ์ฑ„๋„ ๋‚ด์žฅํ˜• ๋งˆ์ดํฌ๋กœ ์นฉ์„ ๊ฐœ๋ฐœํ•˜์—ฌ ์•ฝ๋ฌผ ์ „๋‹ฌ์˜ ์žฅ๊ธฐ์  ์žฌํ˜„์„ฑ์„ ๊ฐœ์„ ํ•˜์˜€๋‹ค. ์ด ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ์ฑ„๋„์„ ํ†ตํ•ด ํ•ญ์„ฌ์œ ํ™” ์•ฝ๋ฌผ์˜ ๋ฐฉ์ถœ์„ ์กฐ์ ˆํ•˜๋Š” ๋งˆ์ดํฌ๋กœ ์นฉ์˜ ๋ถ€์ฐฉ์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๋งˆ์ดํฌ๋กœ ์นฉ์— ์šฉ์ดํ•˜๊ฒŒ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค.1. ์„œ ๋ก  1 1.1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ 1 1.1.1. ์•ฝ๋ฌผ ์ „๋‹ฌ์„ ์œ„ํ•œ ์ฑ„๋„ ๋‚ด์žฅ ์ด์‹ํ˜• ๋งˆ์ดํฌ๋กœ ์นฉ 1 1.1.2. ์„ฌ์œ ์„ฑ ์บก์Š์˜ ํ˜•์„ฑ ๊ณผ์ • 1 1.2. ์ ‘๊ทผ ๋ฐฉ๋ฒ• 2 2. ์‹คํ—˜ ๋ฐฉ๋ฒ• 3 2.1. ์‹œ์•ฝ ๋ฐ ์žฌ๋ฃŒ 3 2.2. ๋งˆ์ดํฌ๋กœ ์นฉ์˜ ์ œ์ž‘ 4 2.3. ๋งˆ์ดํฌ๋กœ ์นฉ์˜ ๋ถ„์„ 7 2.4. Integrated mirochip ์ œ์ž‘์„ ์œ„ํ•œ ์ตœ์  ์ฑ„๋„ ์„ ํƒ 8 2.5. ์„ธํฌ ๋…์„ฑ ํ‰๊ฐ€ 8 2.6. ๋™๋ฌผ ์‹คํ—˜ 9 2.6.1. Integrated mirochip ์ด์‹ 9 2.6.2. ์•ฝ๋ฌผ ๋™๋ ฅํ•™ ์—ฐ๊ตฌ 12 2.6.3. ์กฐ์ง ๋ถ„์„ 12 2.7. ํ†ต๊ณ„์  ๋ถ„์„ 13 3. ์‹คํ—˜ ๊ฒฐ๊ณผ 13 3.1. ๋งˆ์ดํฌ๋กœ ์นฉ์˜ ๋ถ„์„ 13 3.2. ์•ฝ๋ฌผ ๋ฐฉ์ถœ ์‹คํ—˜ 19 3.3. ์•ฝ๋ฌผ ๋™๋ ฅํ•™ ๋ถ„์„ 28 3.4. ์กฐ์ง ๋ถ„์„ 32 4. ๊ฒฐ ๋ก  35 ์ฐธ๊ณ ๋ฌธํ—Œ 38 Abstract in English 42์„

    ๋งˆ๊ทธ๋„คํƒ€์ดํŠธ ๋‚˜๋…ธ์ž…์ž์—์„œ์˜ ๋ฒ„์›จ์ด ํŠธ๋žœ์ง€์…˜์˜ ์—ด์  ํžˆ์Šคํ…Œ๋ฆฌ์‹œ์Šค

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2016. 8. ํ˜„ํƒํ™˜.Metal-insulator transition in magnetite (Fe3O4), also called as Verwey transition, has been extensively studied. Recently, there has been increasing interest in the Verwey transition in Fe3O4 nanoparticles instead of bulk Fe3O4 with the hope of unraveling the mystery of this phenomenon. In this thesis, we report thermal hysteresis of Verwey transition in Fe3O4 nanoparticles for the first time, which has never been observed in bulk phase Fe3O4. Verwey transition observed in field-cooled (FC) measurements takes place at about 10 K lower than the transition observed in zero-field-cooled (ZFC) measurements when the Fe3O4 nanoparticles are smaller than 120 nm. The difference between the two transition temperatures increases with increasing particle sizes below 42 nm. However, the transition temperatures do not change significantly within the size regime of 42 to 120 nm. The gap starts to diminish with particle size over 200 nm and disappears completely in the bulk phase. These findings may contribute to elucidating the mechanism of metal-insulator transition in Fe3O4.1. Introduction 1 1.1 Iron oxide nanoparticles 1 1.2 Verwey transition 2 2. Experimental section 4 2.1 Materials 4 2.2 Synthesis of stoichiometric magnetite nanoparticles 4 2.3 Stoichiometric bulk magnetite sample preparation 5 2.4 Characterization 5 3. Results and Discussion 7 3.1 Synthesis of stoichiometric Fe3O4 nanoparticles 7 3.2 Verwey transition dependent on measuring condition: ZFC and FC 8 4. Conclusion 12 References 25 ์ดˆ๋ก 28Maste
    corecore