15 research outputs found

    도핑 λ˜λŠ” 적측에 λ”°λ₯Έ κ·Έλž˜ν•€μ˜ 전기적 νŠΉμ„± λ³€ν™”

    No full text
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μžμ—°κ³Όν•™λŒ€ν•™ λ¬Όλ¦¬Β·μ²œλ¬Έν•™λΆ€,2016. 2. λ°•μ˜μš°.Since graphene has outstanding properties such as high mobility, mechanical robustness, flexibility and so on. It has been believed to be next-generation material in various applications. Because of the absence of band gap, it is difficult to replace Si-based electronics. However, high mobility or high current capacity lead to feasibility of graphene-based electronics such as high speed transistor or interconnects, respectively. Moreover, graphene can be used for sensor device due to its high sensitivity to environment. Therefore, it is required to modify the electrical properties and investigate the performance. In this dissertation, we will discuss the electrical properties of modified graphene via doping and stacking in terms of electrical conductivity, thermoelectric power (TEP), and Raman spectroscopy. First, we will introduce the electron doping of large area graphene by high temperature and high pressure hydrogenation. The n-type doping of hydrogenated CVD-grown single layer graphene (SLG) is confirmed by measuring TEP. Likewise in mechanically exfoliated SLG, the gate dependent electrical conductivity and TEP show n-type doping in CVD-grown SLG. The TEPs of pristine and hydrogenated SLG obey the Mott relation, indicating the diffusive charge carriers. The Raman spectroscopy exhibits the red-shift of G and 2D peak as hydrogen adsorption, which is consistent with the n-type doping observed from electrical conductivity and TEP. Bernal stacked bilayer graphene (BLG) can be utilized for electronic devices due to band gap opening as applying perpendicular electric field. Modulation of carrier density as well as band gap control is essential for electronics. We will discuss the n-type doping of Bernal stacked BLG on hexagonal boron nitride (h-BN) by high temperature and high pressure hydrogenation. Since the h-BN has little dangling bonds and similar lattice structure with graphene, the effect of SiO2 substrate is removed, accessing the intrinsic property of graphene. As hydrogenation procedure, the n-type doping appears and the temporal evolution follows first-order adsorption model. The mobility of electron and hole carrier is inversely proportional to impurity density. In addition to the mobility behavior, the appearance of D peak in Raman spectroscopy after hydrogenation indicates that the charge carriers satisfy short-range scattering. The minimum conductivity shows constant value during hydrogenation process, which can be understood by the competition between the reduced mobility and the increased carrier density. The increase of FWHM (full with half maximum) of G peak requires not only doping but also compressive strain. The compressive strain is in good agreement with reduced d-spacing in electron diffraction experiment as previously reported. Secondly, we will discuss the electrical properties of twisted bilayer graphene (tBLG). We fabricated tBLG by transferring CVD-grown SLG twice on electron transparent substrate, SiNx, and measured magnetoresistance (MR). We obtained two kinds of tBLG sample, which have 2Β° and 18Β° of twist angle extracted from electron diffraction experiment. The Shubnikov de Haas oscillations in both case exhibit two superposed carriers and we obtained Berry's phase by Landau fan diagram analysis. The 18Β° case shows that two carriers have Ο€ Berry's phase, respectively. In 2Β° case, low carrier density has Ο€, high carrier density has 2Ο€ Berry's phase. The difference can be understood by introducing the interlayer potential and interlayer coupling effect in electronic band plot. The Berry's phase of carrier pocket is determined by the number of Dirac point, where a Dirac point contributes Ο€ Berrys phase. In 18Β° case, since each carrier pocket has a Dirac point, we obtain Ο€ Berry's phase for each carrier density. In 2Β° case, small carrier pocket (low carrier density) includes a Dirac cone, which yields Ο€ Berry's phase. While, large carrier pocket (high carrier density) includes two Dirac cones, which yields 2Ο€ Berry's phase. As above description, the electrical property of tBLG is modified by twist angle. Electron diffraction experiment or Raman spectroscopy can be used to extract twist angle. We will introduce an optical method to obtain twist angle by hexagonal tBLG. We synthesized hexagonal tBLG by CVD method and the twist angle is measured by optical microscope. Analyzing the correlation between angles obtained from electron diffraction experiment and optical microscope, the optical angle exactly matches atomic twist angle. Moreover, angle dependence of Raman spectroscopy obtained from optical microscope is consistent with atomic twist angle dependent Raman spectra from electron diffraction experiment. From the investigation, we discussed the easy way to acquire twist angle.κ·Έλž˜ν•€μ€ 높은 μ „ν•˜ 이동도, λ›°μ–΄λ‚œ 역학적 강도 및 μœ μ—°μ„± λ“±μ˜ νŠΉμ„±μ„ κ°€μ§€λ―€λ‘œ λ‹€μ–‘ν•œ μ‘μš© λΆ„μ•Όμ˜ μ°¨μ„ΈλŒ€ μ†Œμž¬λ‘œμ„œ κΈ°λŒ€λœλ‹€. λ°΄λ“œκ°­μ˜ λΆ€μž¬λ‘œ 인해 μ‹€λ¦¬μ½˜ 기반 μ „μž μ†Œμžλ₯Ό λŒ€μ²΄ν•˜λŠ”λ° 어렀움이 따름에도 λΆˆκ΅¬ν•˜κ³ , 높은 μ „ν•˜μ΄λ™λ„ 및 μ „λ₯˜ μš©λŸ‰μ€ μ΄ˆκ³ μ† νŠΈλžœμ§€μŠ€ν„° 및 interconnectλ‘œμ„œμ˜ 뢀뢄적인 λŒ€μ•ˆμ΄ 될 κ²ƒμœΌλ‘œ 여겨진닀. 뿐만 μ•„λ‹ˆλΌ ν‘œλ©΄μ /λΆ€ν”Ό λΉ„κ°€ ν¬λ―€λ‘œ μ™ΈλΆ€ ν™˜κ²½μ— λ―Όκ°ν•˜κ²Œ λ°˜μ‘ν•˜μ—¬ μ„Όμ„œ λ“±μ˜ ν™œμš© κ°€λŠ₯성이 크닀. λ”°λΌμ„œ κ·Έλž˜ν•€μ˜ 전기적 νŠΉμ„±μ„ λ³€ν™”μ‹œν‚€κ³  κ·Έ μ„±λŠ₯ 뢄석 연ꡬ가 μš”κ΅¬λœλ‹€. 이 ν•™μœ„ λ…Όλ¬Έμ—μ„œλŠ” 도핑 ν˜Ήμ€ 적측에 λ”°λ₯Έ κ·Έλž˜ν•€μ˜ 전기적 νŠΉμ„±λ³€ν™”λ₯Ό 전기전도도, μ—΄κΈ°μ „λ ₯ 및 라만 μŠ€νŽ™νŠΈλŸΌμ„ 톡해 μ—°κ΅¬ν•˜μ˜€λ‹€. 첫 번째둜, μš°λ¦¬λŠ” 고온, κ³ μ••μ˜ μˆ˜μ†Œν™” 과정을 ν†΅ν•œ λŒ€λ©΄μ  κ·Έλž˜ν•€μ˜ μ „μž 도핑 νŠΉμ„±μ„ μ†Œκ°œν•  것이닀. ν™”ν•™ 기상 μ¦μ°©λ²•μœΌλ‘œ μ„±μž₯μ‹œν‚¨ κ·Έλž˜ν•€μ„ μˆ˜μ†Œν™”ν•˜κ³ , μ—΄κΈ°μ „λ ₯ 츑정을 μˆ˜ν–‰ν•¨μœΌλ‘œμ¨ n-νƒ€μž… 도핑 ν˜„μƒμ„ ν™•μΈν•œλ‹€. μ„ ν–‰ 연ꡬ인 HOPG (Highly Oriented Pyrolytic Graphite)λ‘œλΆ€ν„° λ°•λ¦¬ν•œ κ·Έλž˜ν•€μ˜ μˆ˜μ†Œ 흑착에 λ”°λ₯Έ n-νƒ€μž… 도핑 νŠΉμ„±μ€ λŒ€λ©΄μ  κ·Έλž˜ν•€μ˜ κ²½μš°μ— λ™μΌν•˜κ²Œ λ‚˜νƒ€λ‚˜λŠ”λ° μ΄λŠ” μ „κΈ°μ „λ„λ„μ˜ 게이트 (Gate) μ˜μ‘΄μ„± 결과와 μ—΄κΈ°μ „λ ₯ μΈ‘μ • κ²°κ³Όλ‘œλΆ€ν„° 페λ₯΄λ―Έ μ€€μœ„μ˜ μƒμŠΉ (μ „μž 도핑)을 톡해 확인할 수 μžˆλ‹€. μˆ˜μ†Œ 흑착 μ „, ν›„ λͺ¨λ“  κ²½μš°μ— μ—΄κΈ°μ „λ ₯이 Mott 관계식을 따름을 톡해 μ „ν•˜μ˜ 확산에 μ˜ν•΄ μˆ˜μ†‘νŠΉμ„±μ΄ 이루어지고 μžˆμŒμ„ ν™•μΈν•˜μ˜€λ‹€. Raman μŠ€νŽ™νŠΈλŸΌ μΈ‘μ •μœΌλ‘œλΆ€ν„° μˆ˜μ†Œ 흑착에 따라 G 피크 및 2D 피크 μœ„μΉ˜μ˜ 적색 편이(red-shift)λ₯Ό ν™•μΈν•˜μ˜€κ³ , μ΄λŠ” 전기전도도 및 μ—΄κΈ°μ „λ ₯κ³Ό λ™μΌν•œ n-νƒ€μž… 도핑 νŠΉμ„±μ„ 보여쀀닀. Bernal 적측된 두 κ²Ή κ·Έλž˜ν•€μ€ μ‹œλ£Œμ— μˆ˜μ§ν•œ μ™ΈλΆ€ μ „κΈ°μž₯에 μ˜ν•΄ λ°΄λ“œ κ°­ (Band gap)이 μ—΄λ € μ „μž μ†Œμžλ‘œμ˜ ν™œμš©μ΄ κΈ°λŒ€λœλ‹€. μ „μž μ†Œμž ν™œμš©μ„ μœ„ν•΄μ„œ λ°΄λ“œκ°­ 쑰절 이외에도 μ „ν•˜ λ°€λ„μ˜ 쑰절 λ˜ν•œ μš”κ΅¬λœλ‹€. μš°λ¦¬λŠ” μœ‘κ°ν˜• 보둠 λ‚˜μ΄νŠΈλΌμ΄λ“œ μœ„μ— 놓인 Bernal 적측된 두 κ²Ή κ·Έλž˜ν•€μ˜ 고온, κ³ μ••μ˜ μˆ˜μ†Œν™” 과정을 ν†΅ν•œ n-νƒ€μž… 도핑 νŠΉμ„±μ„ λ…Όμ˜ν•  것이닀. μœ‘κ°ν˜• 보둠 λ‚˜μ΄νŠΈλΌμ΄λ“œλŠ” dangling bondsκ°€ 적고, κ·Έλž˜ν•€κ³Ό μœ μ‚¬ν•œ 격자 ꡬ쑰λ₯Ό κ°€μ§μœΌλ‘œμ¨ μ‹€λ¦¬μ½˜ μ˜₯μ‚¬μ΄λ“œ 기판의 영ν–₯을 λ°°μ œν•œ κ·Έλž˜ν•€ 고유의 νŠΉμ„± 연ꡬ에 μ ν•©ν•˜λ‹€. μˆ˜μ†Œ 흑착이 이루어짐에 따라 n-νƒ€μž… 도핑이 μΌμ–΄λ‚˜κ³ , 흑착 과정은 μ‹œκ°„μ— λ”°λ₯Έ First-order λͺ¨ν˜•μ„ λ§Œμ‘±ν•œλ‹€. μ „μžμ™€ 홀 μ „ν•˜μ˜ μ΄λ™λ„λŠ” 흑착된 μˆ˜μ†Œ 뢈순물 λ†λ„μ˜ 역에 λΉ„λ‘€ν•˜κ³ , Raman μŠ€νŽ™νŠΈλŸΌμœΌλ‘œ ν™•μΈν•œ D ν”Όν¬μ˜ ν˜•μ„±μœΌλ‘œλΆ€ν„° short-range scattering νŠΉμ„±μ„ 따름을 이해할 수 μžˆλ‹€. λ˜ν•œ μ „κΈ°μ „λ„λ„μ˜ μ΅œμ†Œκ°’μ€ μˆ˜μ†Œ 흑착에 따라 λ³€ν™”ν•˜μ§€ μ•ŠλŠ”λ°, μ΄λŠ” κ°μ†Œν•œ 이동도와 μ¦κ°€ν•œ μ „ν•˜ 농도 μ‚¬μ΄μ˜ κ²½μŸμ— κΈ°μΈν•œ κ²ƒμœΌλ‘œ μ΄ν•΄λœλ‹€. λ˜ν•œ Raman μŠ€νŽ™νŠΈλŸΌμ˜ G ν”Όν¬μ˜ 폭 증가 λŸ‰μœΌλ‘œλΆ€ν„° 도핑 이외에 격자의 μ••μΆ• μž‘μš© (compressive strain)이 일어남을 μ˜ˆμƒν•  수 있고, μ΄λŠ” 기쑴의 μ „μž 회절 μ‹€ν—˜μ„ 톡해 λ°ν˜€μ§„ d-spacing의 κ°μ†Œμ™€ λΆ€ν•©ν•œλ‹€. 두 번째둜 μš°λ¦¬λŠ” 두 겹의 κ·Έλž˜ν•€μ΄ 적측될 λ•Œ twist angle 만큼 λ’€ν‹€λ¦° 경우의 전기적 νŠΉμ„±μ— λŒ€ν•΄ λ…Όμ˜ν•  것이닀. ν™”ν•™ 기상 μ¦μ°©λ²•μœΌλ‘œ κΈ°λ₯Έ 단일 κ²Ή κ·Έλž˜ν•€μ„ μ „μž νˆ¬κ³Όμ„±μ„ μ§€λ‹Œ μ‹€λ¦¬μ½˜ λ‚˜μ΄νŠΈλΌμ΄λ“œ κΈ°νŒμ— 반볡 μ „μ‚¬ν•˜μ—¬ λ’€ ν‹€λ¦° 두 κ²Ή κ·Έλž˜ν•€μ„ ν˜•μ„±ν•˜κ³  μžκΈ°μ €ν•­μ„ μΈ‘μ •ν•˜μ˜€λ‹€. 각 μ‹œλ£ŒλŠ” μ „μž 회절 μ‹€ν—˜μ„ 톡해 2도 및 18λ„μ˜ twist angle을 κ°–λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. 두 μ’…λ₯˜μ˜ μ‹œλ£Œ λͺ¨λ‘ Shubnikov de Haas 진동 μƒμ—μ„œ 두 가지 μ’…λ₯˜μ˜ carrier κ°€ μ€‘μ²©λ˜μ–΄ μžˆμŒμ„ 확인할 수 있고, 이λ₯Ό Landau fan diagram으둜 λΆ„μ„ν•¨μœΌλ‘œμ¨ 베리 μœ„μƒ(Berrys phase)의 정보λ₯Ό μΆ”μΆœν•  수 μžˆλ‹€. λ¨Όμ € 18도 λ’€ν‹€λ¦° 경우, 두 carrier λͺ¨λ‘ Ο€ 베리 μœ„μƒμ„ λ³΄μ˜€λ‹€. 2도 λ’€ν‹€λ¦° 경우, carrier 밀도가 μž‘μ€ 경우 Ο€, carrier 밀도가 큰 경우, 2Ο€λ² λ¦¬μœ„μƒμ„λ³΄μ˜€λ‹€.μ΄λŸ¬ν•œμ°¨μ΄λŠ”Interlayer potentialκ³Ό Interlayer coupling μš”μ†Œλ₯Ό λ„μž…ν•¨μœΌλ‘œμ¨ 이해할 수 μžˆλ‹€. λ”λΆˆμ–΄ Carrier pocket의 베리 μœ„μƒμ€ pocket이 ν¬ν•¨ν•˜λŠ” 디락 점 (Dirac point)의 κ°œμˆ˜μ— μ˜ν•΄ κ²°μ •λ˜λŠ”λ°, ν•œ 개의 디락 점당 Ο€ 만큼의베리 μœ„μƒ κΈ°μ—¬ 뢄을 κ°–λŠ”λ‹€. 18도 λ’€ν‹€λ¦° 경우 각 carrier pocket은 ν•˜λ‚˜μ˜ 디락 점을 κ°€μ§€λ―€λ‘œ 각각 Ο€ 베리 μœ„μƒμ„ 가진닀. 2도 λ’€ν‹€λ¦° 경우 carrier pocket이 μž‘μ€ κ²½μš°μ—λŠ” ν•œ 개의 디락 점을 ν¬ν•¨ν•˜λ―€λ‘œ Ο€ 베리 μœ„μƒμ„ κ°€μ§€λŠ” 반면 carrier pocket이 큰 κ²½μš°μ—λŠ” 두 개의 디락 점을 ν¬ν•¨ν•˜λ―€λ‘œ 2π베리 μœ„μƒμ„ κ°–λŠ”λ‹€. 이처럼 λ’€ν‹€λ¦° ꡬ쑰λ₯Ό κ°–λŠ” 두 κ²Ή κ·Έλž˜ν•€μ˜ 경우 twist angle에 따라 전기적 νŠΉμ„±μ΄ 변화함을 ν™•μΈν•˜μ˜€λ‹€. Twist angle을 μΆ”μΆœν•˜κΈ° μœ„ν•˜μ—¬ μ „μž 회절 ν˜Ήμ€ Raman μŠ€νŽ™νŠΈλŸΌμ΄ μ΄μš©λ˜λŠ”λ°, μœ‘κ°ν˜• λ’€ν‹€λ¦° 두 κ²Ή κ·Έλž˜ν•€μ„ μ΄μš©ν•˜μ—¬ κ΄‘ν•™μ μœΌλ‘œ twist angle μΆ”μΆœμ΄ κ°€λŠ₯함을 λ…Όμ˜ν•  것이닀. ν™”ν•™ 기상 증착법을 톡해 μœ‘κ°ν˜• λͺ¨μ–‘μ˜ 두 κ²Ή κ·Έλž˜ν•€μ„ ν˜•μ„±ν•˜κ³ , μœ‘κ°ν˜• 두 개의 λ’€ν‹€λ¦° κ°λ„λŠ” κ΄‘ν•™ ν˜„λ―Έκ²½μ„ 톡해 확인할 수 μžˆλ‹€. 이 각도가 μ›μž μˆ˜μ€€μ˜ twist angle에 ν•΄λ‹Ήν•˜λŠ”μ§€ 규λͺ…ν•˜κΈ° μœ„ν•˜μ—¬ 동일 μ‹œλ£Œμ˜ κ΄‘ν•™ ν˜„λ―Έκ²½ μƒμ—μ„œμ˜ 각도와 μ „μž 회절 μ‹€ν—˜μœΌλ‘œ μΆ”μΆœν•œ 각도 μ‚¬μ΄μ˜ 상관 관계λ₯Ό λΆ„μ„ν•˜μ—¬ μ •ν™•νžˆ μΌμΉ˜ν•¨μ„ ν™•μΈν•˜μ˜€λ‹€. λ˜ν•œ Raman μŠ€νŽ™νŠΈλŸΌ 결과의, κ΄‘ν•™μ μœΌλ‘œ μΆ”μΆœν•œ κ°λ„μ˜μ‘΄μ„±μ€ 기쑴에 보고된 μ „μž νšŒμ ˆλ‘œλΆ€ν„° μΆ”μΆœν•œ 각도 μ˜μ‘΄μ„±κ³Ό 뢀합함을 ν™•μΈν•¨μœΌλ‘œμ¨, μš°λ¦¬λŠ” twist angle 정보λ₯Ό 얻을 수 μžˆλŠ” μ†μ‰¬μš΄ 접근법에 λŒ€ν•˜μ—¬ λ…Όμ˜ν•˜μ˜€λ‹€.Chapter 1 Introduction 1 1.1 Graphene 1 1.2 Electrical conductivity (Οƒ) and thermoelectric power (TEP) 4 1.3 Raman spectroscopy 7 1.4 Hydrogenation and twisted structure of graphene 10 1.5 Outline of Thesis 15 Chapter 2 Experimental methods 23 2.1 Graphene preparation and device fabrication 23 2.2 Electrical conductivity and thermoelectric power measurement 24 2.3 High temperature and high pressure hydrogenation procedure 25 2.4 Raman spectroscopy 26 Chapter 3 Verification of electron doping in hydrogenated graphene by thermoelectric power 29 3.1 Introduction 29 3.2 Experimental 30 3.3 Results and Discussion 31 3.3.1 The gate dependence of electrical conductivity 31 3.3.2 The gate dependence of thermoelectric power 33 3.3.3 Raman spectroscopy 35 3.4 Summary 37 Chapter 4 Electron doping and short range scattering in hydrogenated bilayer graphene on hexagonal boron nitride 41 4.1 Introduction 41 4.2 Experimental 43 4.3 Results and Discussion 43 4.3.1 The electronic transport properties 43 4.3.2 Raman spectroscopy 47 4.4 Summary 49 Chapter 5 Magnetoresistance of twisted bilayer graphene on electron transparent substrate 55 5.1 Introduction 55 5.2 Experimental 57 5.3 Results and Discussion 59 5.3.1 Raman spectroscopy and electron diffraction experiment 59 5.3.2 Magnetoresistance (MR) 61 5.4 Summary 70 Chapter 6 Synthesis of hexagonal twisted bilayer graphene (tBLG) by chemical vapor deposition (CVD) 75 6.1 Introduction 75 6.2 Experimental 76 6.3 Results and Discussion 77 6.4 Summary 81 Chapter 7 Conclusions 87 ꡭ문초둝 89Docto

    ν¬λ¦¬μŠ€ν† νΌ μž‰κ³¨λ“œμ˜ ν™”ν•™ λ°˜μ‘ λ©”μ»€λ‹ˆμ¦˜μ˜ ν˜•μ„± : μΉœν™”λ ₯ 이둠의 영ν–₯을 μ€‘μ‹¬μœΌλ‘œ

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :ν˜‘λ™κ³Όμ • 과학사 및 과학철학전곡,2001.Maste

    2017 제1μ°¨ μΆ©λ‚¨λ―Έλž˜μ—°κ΅¬ν¬λŸΌ(CNIμ„Έλ―Έλ‚˜2017-014) (홍성주,μ΄μ„ν˜•,ν™μ›ν‘œ)

    No full text
    O μ£Ό 제 : κΈ€λ‘œλ²Œ ν™˜κ²½λ³€ν™”μ— λŒ€μ‘ν•œ μΆ©λ‚¨μ˜ λ―Έλž˜μ „λž΅ O 개 μš” - 일 μ‹œ : 2017.03.09.(λͺ©) 15:00 - μž₯ μ†Œ : 좩남도청 4μΈ΅ λŒ€νšŒμ˜μ‹€ - λͺ© 적 : μΆ©λ‚¨μ˜ ν–‰λ³΅ν•œ μ„±μž₯을 선도할 λ―Έλž˜μ„±μž₯λ³ΈλΆ€μ˜ μΆœλ²”μ„ κΈ°λ…ν•˜κ³  κΈ€λ‘œλ²Œ ν™˜κ²½λ³€ν™”μ— λŒ€μ‘ν•œ λ―Έλž˜μ •μ±… λ°©ν–₯을 λͺ¨μƒ‰ O μ£Όμ œλ°œν‘œ - λ°œν‘œ 1 : κΈ€λ‘œλ²Œ νŠΈλ Œλ“œμ˜ λ³€λ™μœΌλ‘œ λ³Έ ꡭ가적, 지역적 과제 (κ³Όν•™κΈ°μˆ μ •μ±…μ—°κ΅¬μ› 홍성주 박사) - λ°œν‘œ 2 : 4μ°¨ μ‚°μ—…ν˜λͺ…μ‹œλŒ€ μΆ©λ‚¨μ˜ λ―Έλž˜μ „λž΅ (μ²­μš΄λŒ€ν•™κ΅ μœ΅ν•©κΈ°μˆ κ²½μ˜ν•™λΆ€ μ΄μ„ν˜• ꡐ수) - λ°œν‘œ 3 : μˆ˜μ†Œμ°¨ ꡭ책사업화 과정이 미래먹거리 λ°œκ΅΄μ— μ£ΌλŠ” μ‹œμ‚¬μ  (좩남연ꡬ원 ν™μ›ν‘œ 박사)- λ°œν‘œ 1 : κΈ€λ‘œλ²Œ νŠΈλ Œλ“œμ˜ λ³€λ™μœΌλ‘œ λ³Έ ꡭ가적, 지역적 과제 (κ³Όν•™κΈ°μˆ μ •μ±…μ—°κ΅¬μ› 홍성주 박사) - λ°œν‘œ 2 : 4μ°¨ μ‚°μ—…ν˜λͺ…μ‹œλŒ€ μΆ©λ‚¨μ˜ λ―Έλž˜μ „λž΅ (μ²­μš΄λŒ€ν•™κ΅ μœ΅ν•©κΈ°μˆ κ²½μ˜ν•™λΆ€ μ΄μ„ν˜• ꡐ수) - λ°œν‘œ 3 : μˆ˜μ†Œμ°¨ ꡭ책사업화 과정이 미래먹거리 λ°œκ΅΄μ— μ£ΌλŠ” μ‹œμ‚¬μ  (좩남연ꡬ원 ν™μ›ν‘œ 박사
    corecore