15 research outputs found
λν λλ μ μΈ΅μ λ°λ₯Έ κ·Έλνμ μ κΈ°μ νΉμ± λ³ν
νμλ
Όλ¬Έ(λ°μ¬)--μμΈλνκ΅ λνμ :μμ°κ³Όνλν 물리·μ²λ¬ΈνλΆ,2016. 2. λ°μμ°.Since graphene has outstanding properties such as high mobility, mechanical robustness, flexibility and so on. It has been believed to be next-generation material in various applications. Because of the absence of band gap, it is difficult to replace Si-based electronics. However, high mobility or high current capacity lead to feasibility of graphene-based electronics such as high speed transistor or interconnects, respectively. Moreover, graphene can be used for sensor device due to its high sensitivity to environment. Therefore, it is required to modify the electrical properties and investigate the performance. In this dissertation, we will discuss the electrical properties of modified graphene via doping and stacking in terms of electrical conductivity, thermoelectric power (TEP), and Raman spectroscopy.
First, we will introduce the electron doping of large area graphene by high temperature and high pressure hydrogenation. The n-type doping of hydrogenated CVD-grown single layer graphene (SLG) is confirmed by measuring TEP. Likewise in mechanically exfoliated SLG, the gate dependent electrical conductivity and TEP show n-type doping in CVD-grown SLG. The TEPs of pristine and hydrogenated SLG obey the Mott relation, indicating the diffusive charge carriers. The Raman spectroscopy exhibits the red-shift of G and 2D peak as hydrogen adsorption, which is consistent with the n-type doping observed from electrical conductivity and TEP.
Bernal stacked bilayer graphene (BLG) can be utilized for electronic devices due to band gap opening as applying perpendicular electric field. Modulation of carrier density as well as band gap control is essential for electronics. We will discuss the n-type doping of Bernal stacked BLG on hexagonal boron nitride (h-BN) by high temperature and high pressure hydrogenation. Since the h-BN has little dangling bonds and similar lattice structure with graphene, the effect of SiO2 substrate is removed, accessing the intrinsic property of graphene. As hydrogenation procedure, the n-type doping appears and the temporal evolution follows first-order adsorption model. The mobility of electron and hole carrier is inversely proportional to impurity density. In addition to the mobility behavior, the appearance of D peak in Raman spectroscopy after hydrogenation indicates that the charge carriers satisfy short-range scattering. The minimum conductivity shows constant value during hydrogenation process, which can be understood by the competition between the reduced mobility and the increased carrier density. The increase of FWHM (full with half maximum) of G peak requires not only doping but also compressive strain. The compressive strain is in good agreement with reduced d-spacing in electron diffraction experiment as previously reported.
Secondly, we will discuss the electrical properties of twisted bilayer graphene (tBLG). We fabricated tBLG by transferring CVD-grown SLG twice on electron transparent substrate, SiNx, and measured magnetoresistance (MR). We obtained two kinds of tBLG sample, which have 2Β° and 18Β° of twist angle extracted from electron diffraction experiment. The Shubnikov de Haas oscillations in both case exhibit two superposed carriers and we obtained Berry's phase by Landau fan diagram analysis. The 18Β° case shows that two carriers have Ο Berry's phase, respectively. In 2Β° case, low carrier density has Ο, high carrier density has 2Ο Berry's phase. The difference can be understood by introducing the interlayer potential and interlayer coupling effect in electronic band plot. The Berry's phase of carrier pocket is determined by the number of Dirac point, where a Dirac point contributes Ο Berrys phase. In 18Β° case, since each carrier pocket has a Dirac point, we obtain Ο Berry's phase for each carrier density. In 2Β° case, small carrier pocket (low carrier density) includes a Dirac cone, which yields Ο Berry's phase. While, large carrier pocket (high carrier density) includes two Dirac cones, which yields 2Ο Berry's phase. As above description, the electrical property of tBLG is modified by twist angle.
Electron diffraction experiment or Raman spectroscopy can be used to extract twist angle. We will introduce an optical method to obtain twist angle by hexagonal tBLG. We synthesized hexagonal tBLG by CVD method and the twist angle is measured by optical microscope. Analyzing the correlation between angles obtained from electron diffraction experiment and optical microscope, the optical angle exactly matches atomic twist angle. Moreover, angle dependence of Raman spectroscopy obtained from optical microscope is consistent with atomic twist angle dependent Raman spectra from electron diffraction experiment. From the investigation, we discussed the easy way to acquire twist angle.κ·Έλνμ λμ μ ν μ΄λλ, λ°μ΄λ μνμ κ°λ λ° μ μ°μ± λ±μ νΉμ±μ κ°μ§λ―λ‘ λ€μν μμ© λΆμΌμ μ°¨μΈλ μμ¬λ‘μ κΈ°λλλ€. λ°΄λκ°μ λΆμ¬λ‘ μΈν΄ μ€λ¦¬μ½ κΈ°λ° μ μ μμλ₯Ό λ체νλλ° μ΄λ €μμ΄ λ°λ¦μλ λΆκ΅¬νκ³ , λμ μ νμ΄λλ λ° μ λ₯ μ©λμ μ΄κ³ μ νΈλμ§μ€ν° λ° interconnectλ‘μμ λΆλΆμ μΈ λμμ΄ λ κ²μΌλ‘ μ¬κ²¨μ§λ€. λΏλ§ μλλΌ νλ©΄μ /λΆνΌ λΉκ° ν¬λ―λ‘ μΈλΆ νκ²½μ λ―Όκ°νκ² λ°μνμ¬ μΌμ λ±μ νμ© κ°λ₯μ±μ΄ ν¬λ€. λ°λΌμ κ·Έλνμ μ κΈ°μ νΉμ±μ λ³νμν€κ³ κ·Έ μ±λ₯ λΆμ μ°κ΅¬κ° μꡬλλ€. μ΄ νμ λ
Όλ¬Έμμλ λν νΉμ μ μΈ΅μ λ°λ₯Έ κ·Έλνμ μ κΈ°μ νΉμ±λ³νλ₯Ό μ κΈ°μ λλ, μ΄κΈ°μ λ ₯ λ° λΌλ§ μ€ννΈλΌμ ν΅ν΄ μ°κ΅¬νμλ€.
첫 λ²μ§Έλ‘, μ°λ¦¬λ κ³ μ¨, κ³ μμ μμν κ³Όμ μ ν΅ν λλ©΄μ κ·Έλνμ μ μ λν νΉμ±μ μκ°ν κ²μ΄λ€. νν κΈ°μ μ¦μ°©λ²μΌλ‘ μ±μ₯μν¨ κ·Έλνμ μμννκ³ , μ΄κΈ°μ λ ₯ μΈ‘μ μ μνν¨μΌλ‘μ¨ n-νμ
λν νμμ νμΈνλ€. μ ν μ°κ΅¬μΈ HOPG (Highly Oriented Pyrolytic Graphite)λ‘λΆν° λ°λ¦¬ν κ·Έλνμ μμ ν‘μ°©μ λ°λ₯Έ n-νμ
λν νΉμ±μ λλ©΄μ κ·Έλνμ κ²½μ°μ λμΌνκ² λνλλλ° μ΄λ μ κΈ°μ λλμ κ²μ΄νΈ (Gate) μμ‘΄μ± κ²°κ³Όμ μ΄κΈ°μ λ ₯ μΈ‘μ κ²°κ³Όλ‘λΆν° νλ₯΄λ―Έ μ€μμ μμΉ (μ μ λν)μ ν΅ν΄ νμΈν μ μλ€. μμ ν‘μ°© μ , ν λͺ¨λ κ²½μ°μ μ΄κΈ°μ λ ₯μ΄ Mott κ΄κ³μμ λ°λ¦μ ν΅ν΄ μ νμ νμ°μ μν΄ μμ‘νΉμ±μ΄ μ΄λ£¨μ΄μ§κ³ μμμ νμΈνμλ€. Raman μ€ννΈλΌ μΈ‘μ μΌλ‘λΆν° μμ ν‘μ°©μ λ°λΌ G νΌν¬ λ° 2D νΌν¬ μμΉμ μ μ νΈμ΄(red-shift)λ₯Ό νμΈνμκ³ , μ΄λ μ κΈ°μ λλ λ° μ΄κΈ°μ λ ₯κ³Ό λμΌν n-νμ
λν νΉμ±μ 보μ¬μ€λ€.
Bernal μ μΈ΅λ λ κ²Ή κ·Έλνμ μλ£μ μμ§ν μΈλΆ μ κΈ°μ₯μ μν΄ λ°΄λ κ° (Band gap)μ΄ μ΄λ € μ μ μμλ‘μ νμ©μ΄ κΈ°λλλ€. μ μ μμ νμ©μ μν΄μ λ°΄λκ° μ‘°μ μ΄μΈμλ μ ν λ°λμ μ‘°μ λν μꡬλλ€. μ°λ¦¬λ μ‘κ°ν λ³΄λ‘ λμ΄νΈλΌμ΄λ μμ λμΈ Bernal μ μΈ΅λ λ κ²Ή κ·Έλνμ κ³ μ¨, κ³ μμ μμν κ³Όμ μ ν΅ν n-νμ
λν νΉμ±μ λ
Όμν κ²μ΄λ€. μ‘κ°ν λ³΄λ‘ λμ΄νΈλΌμ΄λλ dangling bondsκ° μ κ³ , κ·Έλνκ³Ό μ μ¬ν 격μ ꡬ쑰λ₯Ό κ°μ§μΌλ‘μ¨ μ€λ¦¬μ½ μ₯μ¬μ΄λ κΈ°νμ μν₯μ λ°°μ ν κ·Έλν κ³ μ μ νΉμ± μ°κ΅¬μ μ ν©νλ€. μμ ν‘μ°©μ΄ μ΄λ£¨μ΄μ§μ λ°λΌ n-νμ
λνμ΄ μΌμ΄λκ³ , ν‘μ°© κ³Όμ μ μκ°μ λ°λ₯Έ First-order λͺ¨νμ λ§μ‘±νλ€. μ μμ ν μ νμ μ΄λλλ ν‘μ°©λ μμ λΆμλ¬Ό λλμ μμ λΉλ‘νκ³ , Raman μ€ννΈλΌμΌλ‘ νμΈν D νΌν¬μ νμ±μΌλ‘λΆν° short-range scattering νΉμ±μ λ°λ¦μ μ΄ν΄ν μ μλ€. λν μ κΈ°μ λλμ μ΅μκ°μ μμ ν‘μ°©μ λ°λΌ λ³ννμ§ μλλ°, μ΄λ κ°μν μ΄λλμ μ¦κ°ν μ ν λλ μ¬μ΄μ κ²½μμ κΈ°μΈν κ²μΌλ‘ μ΄ν΄λλ€. λν Raman μ€ννΈλΌμ G νΌν¬μ ν μ¦κ° λμΌλ‘λΆν° λν μ΄μΈμ 격μμ μμΆ μμ© (compressive strain)μ΄ μΌμ΄λ¨μ μμν μ μκ³ , μ΄λ κΈ°μ‘΄μ μ μ νμ μ€νμ ν΅ν΄ λ°νμ§ d-spacingμ κ°μμ λΆν©νλ€.
λ λ²μ§Έλ‘ μ°λ¦¬λ λ κ²Ήμ κ·Έλνμ΄ μ μΈ΅λ λ twist angle λ§νΌ λ€νλ¦° κ²½μ°μ μ κΈ°μ νΉμ±μ λν΄ λ
Όμν κ²μ΄λ€. νν κΈ°μ μ¦μ°©λ²μΌλ‘ κΈ°λ₯Έ λ¨μΌ κ²Ή κ·Έλνμ μ μ ν¬κ³Όμ±μ μ§λ μ€λ¦¬μ½ λμ΄νΈλΌμ΄λ κΈ°νμ λ°λ³΅ μ μ¬νμ¬ λ€ νλ¦° λ κ²Ή κ·Έλνμ νμ±νκ³ μκΈ°μ νμ μΈ‘μ νμλ€. κ° μλ£λ μ μ νμ μ€νμ ν΅ν΄ 2λ λ° 18λμ twist angleμ κ°λ κ²μ νμΈνμλ€. λ μ’
λ₯μ μλ£ λͺ¨λ Shubnikov de Haas μ§λ μμμ λ κ°μ§ μ’
λ₯μ carrier κ° μ€μ²©λμ΄ μμμ νμΈν μ μκ³ , μ΄λ₯Ό Landau fan diagramμΌλ‘ λΆμν¨μΌλ‘μ¨ λ² λ¦¬ μμ(Berrys phase)μ μ 보λ₯Ό μΆμΆν μ μλ€. λ¨Όμ 18λ λ€νλ¦° κ²½μ°, λ carrier λͺ¨λ Ο λ² λ¦¬ μμμ 보μλ€. 2λ λ€νλ¦° κ²½μ°, carrier λ°λκ° μμ κ²½μ° Ο, carrier λ°λκ° ν° κ²½μ°, 2Ολ² λ¦¬μμμ보μλ€.μ΄λ¬νμ°¨μ΄λInterlayer potentialκ³Ό Interlayer coupling μμλ₯Ό λμ
ν¨μΌλ‘μ¨ μ΄ν΄ν μ μλ€. λλΆμ΄ Carrier pocketμ λ² λ¦¬ μμμ pocketμ΄ ν¬ν¨νλ λλ½ μ (Dirac point)μ κ°μμ μν΄ κ²°μ λλλ°, ν κ°μ λλ½ μ λΉ Ο λ§νΌμλ² λ¦¬ μμ κΈ°μ¬ λΆμ κ°λλ€. 18λ λ€νλ¦° κ²½μ° κ° carrier pocketμ νλμ λλ½ μ μ κ°μ§λ―λ‘ κ°κ° Ο λ² λ¦¬ μμμ κ°μ§λ€. 2λ λ€νλ¦° κ²½μ° carrier pocketμ΄ μμ κ²½μ°μλ ν κ°μ λλ½ μ μ ν¬ν¨νλ―λ‘ Ο λ² λ¦¬ μμμ κ°μ§λ λ°λ©΄ carrier pocketμ΄ ν° κ²½μ°μλ λ κ°μ λλ½ μ μ ν¬ν¨νλ―λ‘ 2Ολ² λ¦¬ μμμ κ°λλ€. μ΄μ²λΌ λ€νλ¦° ꡬ쑰λ₯Ό κ°λ λ κ²Ή κ·Έλνμ κ²½μ° twist angleμ λ°λΌ μ κΈ°μ νΉμ±μ΄ λ³νν¨μ νμΈνμλ€.
Twist angleμ μΆμΆνκΈ° μνμ¬ μ μ νμ νΉμ Raman μ€ννΈλΌμ΄ μ΄μ©λλλ°, μ‘κ°ν λ€νλ¦° λ κ²Ή κ·Έλνμ μ΄μ©νμ¬ κ΄νμ μΌλ‘ twist angle μΆμΆμ΄ κ°λ₯ν¨μ λ
Όμν κ²μ΄λ€. νν κΈ°μ μ¦μ°©λ²μ ν΅ν΄ μ‘κ°ν λͺ¨μμ λ κ²Ή κ·Έλνμ νμ±νκ³ , μ‘κ°ν λ κ°μ λ€νλ¦° κ°λλ κ΄ν νλ―Έκ²½μ ν΅ν΄ νμΈν μ μλ€. μ΄ κ°λκ° μμ μμ€μ twist angleμ ν΄λΉνλμ§ κ·λͺ
νκΈ° μνμ¬ λμΌ μλ£μ κ΄ν νλ―Έκ²½ μμμμ κ°λμ μ μ νμ μ€νμΌλ‘ μΆμΆν κ°λ μ¬μ΄μ μκ΄ κ΄κ³λ₯Ό λΆμνμ¬ μ νν μΌμΉν¨μ νμΈνμλ€. λν Raman μ€ννΈλΌ κ²°κ³Όμ, κ΄νμ μΌλ‘ μΆμΆν κ°λμμ‘΄μ±μ κΈ°μ‘΄μ λ³΄κ³ λ μ μ νμ λ‘λΆν° μΆμΆν κ°λ μμ‘΄μ±κ³Ό λΆν©ν¨μ νμΈν¨μΌλ‘μ¨, μ°λ¦¬λ twist angle μ 보λ₯Ό μ»μ μ μλ μμ¬μ΄ μ κ·Όλ²μ λνμ¬ λ
Όμνμλ€.Chapter 1 Introduction 1
1.1 Graphene 1
1.2 Electrical conductivity (Ο) and thermoelectric power (TEP) 4
1.3 Raman spectroscopy 7
1.4 Hydrogenation and twisted structure of graphene 10
1.5 Outline of Thesis 15
Chapter 2 Experimental methods 23
2.1 Graphene preparation and device fabrication 23
2.2 Electrical conductivity and thermoelectric power measurement 24
2.3 High temperature and high pressure hydrogenation procedure 25
2.4 Raman spectroscopy 26
Chapter 3 Verification of electron doping in hydrogenated graphene by thermoelectric power 29
3.1 Introduction 29
3.2 Experimental 30
3.3 Results and Discussion 31
3.3.1 The gate dependence of electrical conductivity 31
3.3.2 The gate dependence of thermoelectric power 33
3.3.3 Raman spectroscopy 35
3.4 Summary 37
Chapter 4 Electron doping and short range scattering in hydrogenated bilayer graphene on hexagonal boron nitride 41
4.1 Introduction 41
4.2 Experimental 43
4.3 Results and Discussion 43
4.3.1 The electronic transport properties 43
4.3.2 Raman spectroscopy 47
4.4 Summary 49
Chapter 5 Magnetoresistance of twisted bilayer graphene on electron transparent substrate 55
5.1 Introduction 55
5.2 Experimental 57
5.3 Results and Discussion 59
5.3.1 Raman spectroscopy and electron diffraction experiment 59
5.3.2 Magnetoresistance (MR) 61
5.4 Summary 70
Chapter 6 Synthesis of hexagonal twisted bilayer graphene (tBLG) by chemical vapor deposition (CVD) 75
6.1 Introduction 75
6.2 Experimental 76
6.3 Results and Discussion 77
6.4 Summary 81
Chapter 7 Conclusions 87
κ΅λ¬Έμ΄λ‘ 89Docto
ν¬λ¦¬μ€ν νΌ μ골λμ νν λ°μ λ©μ»€λμ¦μ νμ± : μΉνλ ₯ μ΄λ‘ μ μν₯μ μ€μ¬μΌλ‘
νμλ
Όλ¬Έ(μμ¬)--μμΈλνκ΅ λνμ :νλκ³Όμ κ³Όνμ¬ λ° κ³Όνμ² νμ 곡,2001.Maste
2017 μ 1μ°¨ μΆ©λ¨λ―Έλμ°κ΅¬ν¬λΌ(CNIμΈλ―Έλ2017-014) (νμ±μ£Ό,μ΄μν,νμν)
O μ£Ό μ : κΈλ‘λ² νκ²½λ³νμ λμν μΆ©λ¨μ λ―Έλμ λ΅
O κ° μ
- μΌ μ : 2017.03.09.(λͺ©) 15:00
- μ₯ μ : μΆ©λ¨λμ² 4μΈ΅ λνμμ€
- λͺ© μ : μΆ©λ¨μ ν볡ν μ±μ₯μ μ λν λ―Έλμ±μ₯λ³ΈλΆμ μΆλ²μ κΈ°λ
νκ³ κΈλ‘λ² νκ²½λ³νμ λμν λ―Έλμ μ±
λ°©ν₯μ λͺ¨μ
O μ£Όμ λ°ν
- λ°ν 1 : κΈλ‘λ² νΈλ λμ λ³λμΌλ‘ λ³Έ κ΅κ°μ , μ§μμ κ³Όμ (κ³ΌνκΈ°μ μ μ±
μ°κ΅¬μ νμ±μ£Ό λ°μ¬)
- λ°ν 2 : 4μ°¨ μ°μ
νλͺ
μλ μΆ©λ¨μ λ―Έλμ λ΅ (μ²μ΄λνκ΅ μ΅ν©κΈ°μ κ²½μνλΆ μ΄μν κ΅μ)
- λ°ν 3 : μμμ°¨ κ΅μ±
μ¬μ
ν κ³Όμ μ΄ λ―Έλ먹거리 λ°κ΅΄μ μ£Όλ μμ¬μ (μΆ©λ¨μ°κ΅¬μ νμν λ°μ¬)- λ°ν 1 : κΈλ‘λ² νΈλ λμ λ³λμΌλ‘ λ³Έ κ΅κ°μ , μ§μμ κ³Όμ (κ³ΌνκΈ°μ μ μ±
μ°κ΅¬μ νμ±μ£Ό λ°μ¬)
- λ°ν 2 : 4μ°¨ μ°μ
νλͺ
μλ μΆ©λ¨μ λ―Έλμ λ΅ (μ²μ΄λνκ΅ μ΅ν©κΈ°μ κ²½μνλΆ μ΄μν κ΅μ)
- λ°ν 3 : μμμ°¨ κ΅μ±
μ¬μ
ν κ³Όμ μ΄ λ―Έλ먹거리 λ°κ΅΄μ μ£Όλ μμ¬μ (μΆ©λ¨μ°κ΅¬μ νμν λ°μ¬