29 research outputs found

    Fluid-Structure-Combustion Interaction Simulation for Solid Propellant Rocket Interior Phenomena

    Get PDF
    ๊ณ ์ฒด ๋กœ์ผ“ ๋‚ด๋ถ€ ํ˜„์ƒ ์ „์‚ฐ ํ•ด์„์„ ์œ„ํ•ด ๊ธฐ์กด ์šด๋™ ๊ธฐ์ˆ  ๋ฐฉ๋ฒ•๋“ค์˜ ์žฅ์ ์„ ๊ฒฐํ•ฉํ•œ ALE ๊ธฐ๋ฒ•์„ ๋„์ž…ํ•˜์—ฌ ์œ ์ฒด ๊ตฌ์กฐ ์—ฐ๋™ ํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ฐœ๋ณ„ ํ•ด์„ ์š”์†Œ(์œ ๋™, ๊ตฌ์กฐ, ์—ฐ์†Œ)์™ธ์˜ ํ†ตํ•ฉ ๊ธฐ๋ฒ•๋“ค๊ณผ ๋ณ€ํ™”ํ•˜๋Š” ํ•ด์„ ์˜์—ญ์— ๋Œ€ํ•œ ์ž๋™ ๊ฒฉ์ž ์ƒ์„ฑ ๊ธฐ๋ฒ•์ด ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ๊ฐœ๋ฐœ๋œ ํ•ด์„ ํ”„๋กœ๊ทธ๋žจ์„ ์ด์šฉํ•˜์—ฌ ๊ณ ์ฒด ์ถ”์ง„ ๋กœ์ผ“์˜ ์ ํ™”๊ณผ์ •๋ถ€ํ„ฐ ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๋ฃŒ๊ฐ€ ์†Œ์ง„๋˜๋Š” ์‹œ์ ๊นŒ์ง€์˜ ์ „์‚ฐ ํ•ด์„์ด ์ˆ˜ํ–‰๋˜์—ˆ์œผ๋ฉฐ ์ด๋ฅผ ํ†ตํ•˜์—ฌ ์—ฐ์†Œ์‹ค ๋‚ด๋ถ€์˜ ์œ ๋™ ๋ฌผ๋ฆฌ ํ˜„์ƒ๊ณผ ์ถ”์ง„์ œ ๊ทธ๋ ˆ์ธ์˜ ๋ณ€ํ˜• ํŠน์„ฑ์„ ๊ด€์ฐฐํ•˜์˜€๋‹ค.A fluid-structure interaction simulation of solid propellant rocket interior is carried out by employing the ALE (Arbitrary Lagrangian Eulerian) description, a hybrid model of continuum motion description combining the advantages of classical Lagrangian and Eulerian description. The integration process for fluid-structure interaction and an automatic re-meshing algorithm are included to analyze an unsteady fluid-structure interaction phenomenon with the deformation of solid grain during the simulation. The developed solver is applied for the full burning simulation of a solid propellant grain, which is a highly-coupled unsteady phenomenon between gas flow and propellant structure. Based on the integrated computed results, flow physics in the combustion chamber and the behavior of a solid propellant deformation are examined.๋ณธ ์—ฐ๊ตฌ๋Š” ๊ต์œก๊ณผํ•™๊ธฐ์ˆ ๋ถ€์˜ ์šฐ์ฃผ๊ธฐ์ดˆ์›์ฒœ๊ธฐ์ˆ  ๊ฐœ๋ฐœ ์‚ฌ์—…(NSL, National Space Lab, No. 2011- 0029871)๊ณผ ๊ตญํ† ํ•ด์–‘๋ถ€ ๊ฑด์„ค๊ธฐ์ˆ ํ˜์‹ ์‚ฌ์—… ์ดˆ์žฅ๋Œ€ ๊ต๋Ÿ‰์‚ฌ์—…๋‹จ(08 ๊ธฐ์ˆ ํ˜์‹  E01)์˜ ์ง€์›์„ ๋ฐ›์•„ ์ด๋ฃจ์–ด์กŒ์Œ.OAIID:oai:osos.snu.ac.kr:snu2012-01/104/0000004648/14SEQ:14PERF_CD:SNU2012-01EVAL_ITEM_CD:104USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:๊ณ ์ฒด_๋กœ์ผ“_์—ฐ์†Œ์‹ค_๋‚ด๋ถ€์—_๋Œ€ํ•œ_FScI_ํ•ด์„.pdfDEPT_NM:๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€EMAIL:[email protected]:

    The study of data transfer method between non-matching meshes interface using common-refinement method for fluid-structure interaction

    Get PDF
    ๋ณธ ์—ฐ๊ตฌ๋Š” ์œ ์ฒด-๊ณ ์ฒด ์—ฐ์„ฑ ํ•ด์„์ด ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋Š” ๊ณ ์ฒด๋กœ์ผ“์˜ 3์ฐจ์› ์—ฐ์†Œ์‹ค ์ƒ๊ฒฝ๊ณ„๋ฉด ํ˜•์ƒ์— ๋Œ€ํ•ด ์ •๋ณด ์ „๋‹ฌ ๊ธฐ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ common-refinement ๊ธฐ๋ฒ•์˜ ์ ์šฉ์„ ๋ชฉ์ ์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ๊ธฐ๋ฒ• ๊ตฌํ˜„์€ ์ƒ๊ฒฝ๊ณ„๋ฉด์— common surface๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ  ํŠน์ • error norm์„ ์ตœ์†Œํ™” ์‹œํ‚ค๋Š” minimization ๋‚ด์‚ฝ๋ฒ•์„ ์ ์šฉํ•˜๋Š” ๊ณผ์ •์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋‹ค์–‘ํ•œ ๋‹ค์ฐจ์› ์ƒ๊ฒฝ๊ณ„๋ฉด ํ˜•์ƒ์—์„œ ์—ฐ์† ๋ฐ ๋ถˆ์—ฐ์† ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•œ ์ •๋ณด ์ „๋‹ฌ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ๋‹ค๋ฅธ ๊ธฐ๋ฒ•๋“ค๊ณผ ํ•ด์„ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•˜์˜€๋‹ค.During multi-physics or multi-phase simulations accompanying fluid-structure thermal interaction, data transfer problems always arise along non-matching interfaces caused by different computational meshes for each physical domain. Common-refinement scheme, among many available methods, is attractive since it is known to yield conservative and accurate data transfer for non-matching interface cases. This is particularly important in simulating compressible unsteady fluid-structure thermal interaction inside solid propellant rockets, where grid size along solid-fluid interfaces is substantially different. From this perspective, we examine performances of common-refinement-based data transfer scheme between structured quadrilateral (structure part) and unstructured triangular (fluid part) meshes by comparing computed results with other data transfer methods.๋ณธ ์—ฐ๊ตฌ๋Š” ๊ต์œก๊ณผํ•™๊ธฐ์ˆ ๋ถ€์˜ ์šฐ์ฃผ๊ธฐ์ดˆ์›์ฒœ๊ธฐ์ˆ  ๊ฐœ๋ฐœ ์‚ฌ์—…(NSL, National Space Lab, No. 2011-0029871) ๋ฐ 2012๋…„๋„ ์ •๋ถ€(๊ต์œก๊ณผํ•™๊ธฐ์ˆ ๋ถ€) ์˜ ์žฌ์›์œผ๋กœ ๊ตญ๊ฐ€์ˆ˜๋ฆฌ๊ณผํ•™์—ฐ๊ตฌ์†Œ์˜ ์ฃผ์š”์‚ฌ์—… (No. A21001)์œผ๋กœ๋ถ€ํ„ฐ ์ง€์›์„ ๋ฐ›์•„ ์ด๋ฃจ์–ด์กŒ์ŒOAIID:oai:osos.snu.ac.kr:snu2012-01/104/0000004648/35SEQ:35PERF_CD:SNU2012-01EVAL_ITEM_CD:104USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:์œ ์ฒด-๊ตฌ์กฐ_์—ฐ์„ฑ_ํ•ด์„์„_์œ„ํ•œ_common-refinement_๊ธฐ๋ฐ˜_๋ถˆ์ผ์น˜_๊ฒฉ์ž_๊ฒฝ๊ณ„๋ฉด์—์„œ์˜_์ •๋ณด_์ „๋‹ฌ_๊ธฐ๋ฒ•_์—ฐ๊ตฌ.pdfDEPT_NM:๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€EMAIL:[email protected]:

    Full burning ALE based Fluid-Structure-combustion Interaction simulation for solid propellant rocket interior

    Get PDF
    A fluid-structure interaction simulation of solid propellant rocket interior is carried out by employing the ALE (Arbitrary Lagrangian Eulerian) description, a hybrid model of continuum motion description combining the advantages of classical Lagrangian and Eulerian description. The integration process for fluid-structure interaction and an automatic re-meshing algorithm are included to analyze an unsteady fluid-structure interaction phenomenon with the deformation of solid grain during the simulation. The developed solver is applied for the full burning simulation of a solid propellant grain, which is a highly-coupled unsteady phenomenon between gas flow and propellant structure. Based on the integrated computed results, flow physics in the combustion chamber and the behavior of a solid propellant deformation are examined.OAIID:oai:osos.snu.ac.kr:snu2013-01/104/0000004648/3SEQ:3PERF_CD:SNU2013-01EVAL_ITEM_CD:104USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:2013์šฐ์ฃผ๋ฐœ์‚ฌ์ฒด๊ธฐ์ˆ ์‹ฌํฌ์ง€์›€_ํ•œ์ƒํ˜ธ.pdfDEPT_NM:๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€EMAIL:[email protected]:

    The study of data transfer method non-matching meshes interface using common-refinement method for fluid-structure interface

    Get PDF
    ๋ณธ ์—ฐ๊ตฌ๋Š” ์œ ์ฒด-๊ณ ์ฒด ์—ฐ์„ฑ ํ•ด์„์ด ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋Š” ๊ณ ์ฒด๋กœ์ผ“์˜ 3์ฐจ์› ์—ฐ์†Œ์‹ค ์ƒ๊ฒฝ๊ณ„๋ฉด ํ˜•์ƒ์— ๋Œ€ํ•ด ์ •๋ณด ์ „๋‹ฌ ๊ธฐ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ ๊ณตํ†ต์„ธ๋ถ„ ๊ธฐ๋ฒ•์˜ ์ ์šฉ์„ ๋ชฉ์ ์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ๋ณธ ๊ธฐ๋ฒ•์€ ๋ถˆ์ผ์น˜ํ•˜๋Š” ๊ฒฝ๊ณ„๋ฉด๊ฐ„ ์ •๋ณด ์ „๋‹ฌ์—๋„ ๋ณด์กด์„ฑ๊ณผ ์ •ํ™•๋„๋ฅผ ๋™์‹œ์— ๋งŒ์กฑ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์„ ๊ฐ–๋Š”๋‹ค. ๊ธฐ๋ฒ• ๊ตฌํ˜„์€ ์ƒ๊ฒฝ๊ณ„๋ฉด์— ๊ณตํ†ตํ‘œ๋ฉด์„ ๊ตฌ์„ฑํ•˜๊ณ  ํŠน์ • ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™” ์‹œํ‚ค๋Š” ์ตœ์†Œํ™” ๋‚ด์‚ฝ๋ฒ•์„ ์ ์šฉํ•˜๋Š” ๊ณผ์ •์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋‹ค์–‘ํ•œ ๋‹ค์ฐจ์› ์ƒ๊ฒฝ๊ณ„๋ฉด ํ˜•์ƒ์—์„œ ์—ฐ์† ๋ฐ ๋ถˆ์—ฐ์† ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•œ ์ •๋ณด ์ „๋‹ฌ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ๋‹ค๋ฅธ ๊ธฐ๋ฒ•๋“ค๊ณผ ํ•ด์„ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•˜์˜€๋‹ค.During multi-physics or multi-phase simulations accompanying fluid- structure- thermal interaction, data transfer problems always arise along non- matching interfaces caused by different computational meshes for each physical domain. Common- refinement scheme, among many available methods, is attractive since it is known to yield conservative and accurate data transfer for non- matching interface cases. This is particularly important in simulating compressible unsteady fluid- structure- thermal interaction inside solid propellant rockets, where grid size along solid- fluid interfaces is substantially different. From this perspective, we examine performances of common- refinement- based data transfer scheme between structured quadrilateral (structure part) and unstructured triangular (fluid part) meshes by comparing computed results with other data transfer methodsOAIID:oai:osos.snu.ac.kr:snu2014-01/102/0000004648/1SEQ:1PERF_CD:SNU2014-01EVAL_ITEM_CD:102USER_ID:0000004648ADJUST_YN:YEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:์œ ์ฒด-๊ตฌ์กฐ_์—ฐ์„ฑ_ํ•ด์„์„_์œ„ํ•œ_common-refinement_๊ธฐ๋ฐ˜_๋ถˆ์ผ์น˜_๊ฒฉ์ž_๊ฒฝ๊ณ„๋ฉด์—์„œ์˜_์ •๋ณด_์ „๋‹ฌ_๊ธฐ๋ฒ•_์—ฐ๊ตฌ.pdfDEPT_NM:๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€SCOPUS_YN:NCONFIRM:

    ALE based Fluid-Structure-Interaction Simulation of Solid Propellant Rocket

    Get PDF
    The Arbitrary Lagrangian-Eulerian(ALE, in short) method is the new description of continum motion ,which combines the advantages of the classical kinematical descriptions, i.e. Lagrangian and Eulerian description, while minimizing their respective drawbacks. In this paper, the ALE description is adapted to simulate fluid-structure interaction problems. An automatic re-mesh algorithm and a fluid-structure coupling process are included to analyze the interaction and moving motion during the 2-D axisymmetric solid rocket interior FSI phenomena simulation.๋ณธ ๋…ผ๋ฌธ์€ ์œ ๋™๊ณผ ๊ตฌ์กฐ๋ฌผ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ์ธํ•ด ์œ ์ฒด๋‚˜ ๊ตฌ์กฐ, ํ•œ ์ชฝ ๋ถ„์•ผ์—์„œ์˜ ์ ‘๊ทผ์œผ๋กœ๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋Š” ๊ณ ์ฒด ๋กœ์ผ“ ๋‚ด๋ถ€ ์œ ๋™-๊ตฌ์กฐ-์—ฐ์†Œ ๊ฒฐํ•ฉ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด FSI๋ฅผ ์ด์šฉํ•œ ์ „์‚ฐํ•ด์„์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ALE(Arbitrary Lagrangian Eulerian) ๊ธฐ์ˆ  ๋ฐฉ์‹์„ ๋„์ž…ํ•˜์—ฌ ๊ณ„์‚ฐ ๊ฒฉ์ž์˜ ์›€์ง์ž„์„ ํ—ˆ์šฉํ•˜๋ฉด์„œ๋„ ๊ฒฉ์ž์— ๋Œ€ํ•œ ์—ฐ์†์ฒด ์ž…์ž์˜ ์ƒ๋Œ€์šด๋™์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ์œ ์ฒด ์˜์—ญ์˜ ํ•ด์„ ํ”„๋กœ๊ทธ๋žจ์€ 2์ฐจ์› ์••์ถ•์„ฑ ๋น„์ •์ƒ ์œ ๋™ ํ•ด์„์„ ์œ„ํ•œ ์˜ค์ผ๋Ÿฌ ๋ฐฉ์ •์‹์„ ALE ํ˜•ํƒœ๋ฅผ ๋ณ€ํ˜•์‹œ์ผœ ์ ์šฉ ํ•˜์˜€๊ณ , ๊ณ ์ฒด ์˜์—ญ์˜ ํ•ด์„ ํ”„๋กœ๊ทธ๋žจ์€ ALE๋ฅผ ๊ณ ๋ คํ•œ 2์ฐจ์› ๋™์  ์œ ํ•œ ์š”์†Œ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค.OAIID:oai:osos.snu.ac.kr:snu2009-01/104/0000004648/20SEQ:20PERF_CD:SNU2009-01EVAL_ITEM_CD:104USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:๊ณ ์ฒด_๋กœ์ผ“_๋‚ด๋ถ€_๊ทธ๋ ˆ์ธ_์œ ์ฒด-๊ตฌ์กฐ-์—ฐ์†Œ_ํ†ตํ•ฉ_ํ•ด์„.pdfDEPT_NM:๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€EMAIL:[email protected]:

    ๊ณ ์ฒด ๋กœ์ผ“ ์—ฐ์†Œ์‹ค ๋‚ด๋ถ€ ๋ณตํ•ฉ ํ˜„์ƒ์— ๋Œ€ํ•œ ์œ ์ฒด-๊ตฌ์กฐ ์—ฐ์„ฑ ํ•ด์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2014. 2. ๊น€์ข…์•”.The interior phenomena in solid rocket exhibit highly unsteady, multi-scale, and multi-physics features because fluid, structure, and combustion generates a non-linear feedback cycle by influencing one another inside the combustion chamber. In order to integrated fluid-structure-combustion simulation to understand the highly unsteady, multi-physics phenomena inside of solid rocket motor interior, fully integrated computational simulations inside solid propellant rocket are carried out to examine the nonlinear feedback interaction between fluid, structure and combustion module. The Arbitrary Lagrangian Eulerian (ALE) description is employed to efficiently tracking the burning process along grain surface. An automatic re-meshing algorithm is added to the FSbI process to accurately analyze unsteady fluid-structure coupling phenomena with deforming solid grain during simulation. The developed solver is then applied to the full-burning simulation of a solid propellant grain, which is a highly-coupled unsteady phenomenon between gas flow and propellant structure. Based on the integrated computed results, detailed ignition mechanism and flame propagation process along propellant grain surface are investigated. In particular, flame propagation delay and secondary burning phenomena are explained from the physical and numerical perspectives. Furthermore, virtual contact line method is introduced to overcome the boots contact problem occurring in the gas flow-propellant interaction, and the deforming behavior of full-burning solid propellant is examined.๊ณตํ•™๋ฐ•์‚ฌ ํ•™์œ„๋…ผ๋ฌธ ABSTRACT NOMENCLATURE LIST OF TABLES LIST OF FIGURES CHAPTER I INTRODUCTION 1 1.1 Fluid-structure simulation for solid rocket interior 1.2 Dissertation Objectives: A Summary 1.3 Outline of Dissertation CHAPTER II NUMERICAL METHOD I 2.1 The arbitrary Lagrangian-Eulerian method 2.2 Descriptions of motion 2.3 The fundamental ALE equation 2.4 The ALE forms of governing equations CHAPTER III NUMERICAL METHODS II 3.1 Fluid solver 3.2 Structural solver 3.3 Combustion solver 3.4 Spatial and temporal data transfer scheme 3.5 Dynamic mesh treatment 3.6 Surface regression model 3.7 Virtual contact line method CHAPTER IV SIMULATION RESULTS 4.1 Validation problem 4.2 Validation problem 4.3 Rocket modeling and thermal analysis 4.4 Rocket simulation results CHAPTER V CONCLUDING REMARKS & FUTURE WORKS 5.1 Concluding Remarks 5.2 Future work APPENDIX A1. Common refinement data transfer scheme for 3-D rocket REFERENCES ๊ตญ๋ฌธ ์ดˆ๋กDocto

    flow analysis for interior part of solid propellant rocket using fluid-structure interaction

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2007.Maste

    ์‚ฌ๋ฒ•๊ฐœํ˜๊ณผ ๋ฒ•์กฐ์–‘์„ฑ : ์ œ2์ฃผ์ œ ๋ฐœํ‘œ๋…ผ๋ฌธ ; ๋ฒ•์กฐ์ง๋ฌด์™€ ๋ฒ•์กฐ์ธ๊ตฌ / ์ œ2์ฃผ์ œ ์ง€์ •ํ† ๋ก  -๋ฒ•์กฐ์ธ์˜ ํ™œ๋™์˜์—ญ๊ณผ ์ ์ •ํ•œ ๋ฒ•์กฐ์ธ๊ตฌ

    No full text
    ๋ฒ•ํ•™๊ต์œก์— ๋Œ€ํ•œ ์„ธ๋ฏธ๋‚˜์— ์ฐธ์„ํ•˜๊ฒŒ ๋จ์„ ๊ธฐ์˜๊ฒŒ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค. ์ „๋ฐ˜์ ์ธ ํ† ๋ก ์— ์ฐธ์—ฌํ•˜๋Š” ๊ณผ์ •์ค‘์—์„œ ๋ณธ์ธ์—๊ฒŒ๋Š” ๋ฒ•์กฐ์ธ๊ตฌ์— ๊ด€ํ•œ ์†Œ์ œ๋ชฉ์ด ๋ถ™์—ฌ์กŒ์Šต๋‹ˆ๋‹ค. ๊ทธ์— ๋Œ€ํ•œ ์–˜๊ธฐ๋ฅผ ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋ฒ•ํ•™๊ต์œก ์ „๋ฐ˜์— ๊ฑธ์นœ ์ƒ๊ฐ, ์‚ฌ๋ฒ•์‹œํ—˜์ œ๋„, ๊ทธ๋ฆฌ๊ณ  ๋ฒ•์กฐ์ธ๊ตฌ๋ฅผ ์ฐจ๋ก€๋กœ ์–ธ๊ธ‰ํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ๋ฒ•์— ๋Œ€ํ•œ ๊ตญ๋ฏผ์˜ ๊ฐœ๋…์€ ์•„์ง๋„ ๋ฒ•์ด๋ž€ ๋ฐ”๋žŒ์งํ•œ ๋ชจ๋ธ ์ •๋„์ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ง€ํ‚ค๊ธฐ๋ฅผ ํฌ๋งํ•˜๋Š” ์ •๋„์ž…๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฒ•์„ ์œ„๋ฐ˜ํ•œ๋‹ค๋Š” ๊ฒƒ์€ ์–ด๋Š ํฌ๋ง์ ์ธ ์ด์ƒ์„ ํฌ๊ธฐํ•œ๋‹ค๋Š” ๊ฒƒ ์ฏค์ž…๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฒ•์„ ์œ„๋ฐ˜ํ•œ ๊ฒƒ์ด ์ฒ˜๋ฒŒ๋˜๋Š” ๊ฒƒ์„ ๋ณด๋Š” ๊ฒƒ์€ ๊ตญ๋ฏผ์˜ ๋ˆˆ์—๋„ ์•„์ง๋„ ์ด์ƒํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฑด์ถ•๋ฒ•์„ ์œ„๋ฐ˜ํ•˜๋Š” ํ–‰์œ„, ์„ ๊ฑฐ๋ฒ•์„ ์œ„๋ฐ˜ํ•˜๋Š” ํ–‰์œ„, ๊ณต๋ฌด์›์ด ๋‡Œ๋ฌผ์„ ์ˆ˜์ˆ˜ํ•˜๋Š” ํ–‰์œ„ - ์ด ๋ชจ๋“  ๊ฒƒ์ด ์ฒ˜๋ฒŒ๋˜๋Š” ๊ฒƒ์ด ์ด์ƒํ•œ ๊ฒƒ์œผ๋กœ ๋Š๊ปด์ง€๋Š” ๋ฒ•๋ฅ ๋“ค์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์„ธ์ƒ์ด ๋ณ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋„๋กœ๊ตํ†ต๋ฒ•์„ ์œ„๋ฐ˜ํ•˜๋ฉด ์ฒ˜๋ฒŒ๋˜๊ธฐ ์ „์— ์‚ฌ๋žŒ์ด ๋จผ์ € ์ฃฝ์–ด ๋ฒ„๋ฆฝ๋‹ˆ๋‹ค. ๋นจ๊ฐ„ ์‹ ํ˜ธ๋ฅผ ๋ณด๊ณ ๋„ ๋„์‹ฌ์ง€์—์„œ ์ฐจ๊ฐ€ ์ง€๋‚˜๊ฐ€๋ฉด ๋‹ค๋ฅธ ์ฐจ๊ฐ€ ์™€์„œ ์ถฉ๋Œํ•˜์—ฌ ์‚ฌ๋žŒ์ด ๋‹ค์น˜๋Š” ์‚ฌ๊ณ ๊ฐ€ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ๋ฒ•์€ ๋” ์ด์ƒ ๋ชจ๋ธ์ด ์•„๋‹˜์„ ๋ณด์—ฌ ์ค„ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ตญ๋ฏผ ๋ชจ๋‘์—๊ฒŒ ๋ฒ•์€ ์ง€์ผœ์•ผ ํ•œ๋‹ค๋ผ๋Š” ๊ธฐ์ดˆ ์‚ฌ์‹ค์ด ๋ฟŒ๋ฆฌ๊ฐ€ ๊นŠ์ง€ ๋ชปํ•œ ๊ฒƒ์ด ํ˜„์‹ค์ž…๋‹ˆ๋‹ค. ๋ฒ•ํ•™๊ต์œก์€ ๊ตญ๊ฐ€์  ์ฐจ์›์—์„œ ๊ตญ๋ฏผ ๋ชจ๋‘์˜ ๊ต์œก์ด ๋˜์–ด์•ผ ํ•˜๋Š” ์–ด๋ ค์šด ์‚ฌ๋ช…์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๊ณ  ๋ณด์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ž˜ ์ง€์ผœ๋ด์•ผ ๋ณธ์ „์ž…๋‹ˆ๋‹ค. ์—†์„ ๊ฒƒ์„ ์—†๊ฒŒ ํ•˜๋Š” ๊ฒƒ์ด ๋Œ€๋ถ€๋ถ„์ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๊ฒƒ์„ ๋ชปํ•ด๋‚ด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค

    FScI simulation for solid propellant rocket interior with ignition delay and secondary ignition

    No full text
    ๊ณ ์ฒด ๋กœ์ผ“ ๋‚ด๋ถ€ ํ˜„์ƒ ํ•ด์„์„ ์œ„ํ•ด ๊ธฐ์กด ์šด๋™ ๊ธฐ์ˆ  ๋ฐฉ๋ฒ•๋“ค์˜ ์žฅ์ ์„ ๊ฒฐํ•ฉํ•œ ALE ๊ธฐ๋ฒ•์„ ๋„์ž…ํ•˜์—ฌ ์œ ์ฒด-๊ตฌ์กฐ-์—ฐ์†Œ ์—ฐ๋™ ํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ฐœ๋ณ„ ํ•ด์„ ๊ธฐ๋ฒ•(์œ ๋™, ๊ตฌ์กฐ, ์—ฐ์†Œ)์™ธ์— ํ†ตํ•ฉ ๊ธฐ๋ฒ•๋“ค๊ณผ ๋ณ€ํ™”ํ•˜๋Š” ํ•ด์„ ์˜์—ญ์— ๋Œ€ํ•œ ์ž๋™ ๊ฒฉ์ž ์ƒ์„ฑ ๊ธฐ๋ฒ•์ด ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ๊ฐœ๋ฐœ๋œ ํ•ด์„ ํ”„๋กœ๊ทธ๋žจ์„ ์ด์šฉํ•˜์—ฌ ๊ณ ์ฒด ๋กœ์ผ“์— ๋Œ€ํ•ด ๋น„์ ์„ฑ/์ ์„ฑ ํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ ์ ์„ฑ ํ•ด์„ ์‹œ ์ ํ™”๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ ํ™” ์ง€์—ฐ ํ˜„์ƒ๊ณผ ์ด์ฐจ ์ ํ™” ํ˜„์ƒ์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜์˜€๋‹ค.A fluid-structure interaction simulation of solid propellant rocket interior is carried out by employing the ALE (Arbitrary Lagrangian Eulerian) description, a hybrid model of continuum motion description combining the advantages of classical Lagrangian and Eulerian description. The integration process for fluid-structure interaction and an automatic re-meshing algorithm are included to analyze an unsteady fluid-structure interaction phenomenon with the deformation of solid grain during the simulation. The developed solver is applied for the simulation of a solid propellant grain with inviscid/viscous fluid model. Based on the integrated computed results, ignition delay and secondary ignition phenomena are examined from the physical and numerical perspectives.๋ณธ ๋…ผ๋ฌธ์€ ๊ต์œก๊ณผํ•™๊ธฐ์ˆ ๋ถ€์˜ ์žฌ์›์œผ๋กœ ํ•œ๊ตญ์—ฐ๊ตฌ ์žฌ๋‹จ ์ฒจ๋‹จ์‚ฌ์ด์–ธ์Šค ๊ต์œกํ—ˆ๋ธŒ๊ฐœ๋ฐœ์‚ฌ์—…(EDISON)์˜ ์ง€์›(2011-0020559)์„ ๋ฐ›์•„ ์ˆ˜ํ–‰๋˜์—ˆ์Œ.OAIID:oai:osos.snu.ac.kr:snu2013-01/104/0000004648/17SEQ:17PERF_CD:SNU2013-01EVAL_ITEM_CD:104USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:2013์ถ”๊ณ„ํ•ญ๊ณต์šฐ์ฃผํ•™ํšŒ_์ด์ฐฝ์ˆ˜.pdfDEPT_NM:๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€EMAIL:[email protected]:

    The study on data transfer between non-matching meshes using common-refinement method for fluid-structure interaction simulations

    No full text
    During multi-physics or multi-phase simulations accompanying fluid-structure thermal interaction, data transfer problems always arise along non-matching interfaces caused by different computational meshes for each physical domain. Common-refinement scheme, among several available methods, is attractive since it is known to yield-conservative and accurate data transfer along non-matching interface boundary. This is particularly important in simulating compressible unsteady fluid-structure thermal interaction inside solid propellant rockets, where grid size along solid-fluid interfaces is substantially different. From this perspective, we examine performances of a common-refinement-based data transfer scheme between structured quadrilateral (structure part) and unstructured triangular (fluid part) meshes by comparing the computed results with other data transfer methods.๋ณธ ์—ฐ๊ตฌ๋Š” ํ•œ๊ตญํ•ญ๊ณต์šฐ์ฃผ์—ฐ๊ตฌ์›์˜ ํ•™์—ฐํ˜‘๋ ฅ๊ฐ•ํ™”์‚ฌ์—…๊ณผ ๊ต์œก๊ณผํ•™๊ธฐ์ˆ ๋ถ€์˜ ์šฐ์ฃผ๊ธฐ์ดˆ์›์ฒœ๊ธฐ์ˆ ๊ฐœ๋ฐœ ์‚ฌ์—…(No.2011-0029871), ๊ต์œก๊ณผํ•™๊ธฐ์ˆ ๋ถ€์˜ ์žฌ์›์œผ๋กœ ํ•œ๊ตญ๊ณผํ•™์žฌ๋‹จ(No.2011-0027486)์˜ ์ง€์›์„ ๋ฐ›์•„ ์ด๋ฃจ์–ด์กŒ์Œ.OAIID:oai:osos.snu.ac.kr:snu2012-01/104/0000004648/19SEQ:19PERF_CD:SNU2012-01EVAL_ITEM_CD:104USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:์œ ์ฒด-๊ตฌ์กฐ_์—ฐ์„ฑ_ํ•ด์„์„_์œ„ํ•œ_common-refinement_๊ธฐ๋ฐ˜์˜_๋ถˆ์ผ์น˜_๊ฒฉ์ž_๊ฐ„_์ •๋ณด_์ „๋‹ฌ_๊ธฐ๋ฒ•_์—ฐ๊ตฌ.pdfDEPT_NM:๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€EMAIL:[email protected]:
    corecore