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Abstract  
 

Integrated Fluid-Structure Simulation for 
Coupled Phenomena of a Solid Propellant 
Rocket Interior 

Han, Sangho 

School of Mechanical and Aerospace Engineering 
The Graduate School 

Seoul National University 
 

 

The interior phenomena in solid rocket exhibit highly unsteady, multi-scale, and 

multi-physics features because fluid, structure, and combustion generate a non-linear 

feedback cycle by influencing one another inside the combustion chamber. In order to 

integrated fluid-structure-combustion simulation to understand the highly unsteady, 

multi-physics phenomena inside of solid rocket motor interior, fully integrated 

computational simulations inside solid propellant rocket are carried out to examine the 

nonlinear feedback interaction between fluid, structure and combustion module. The 

Arbitrary Lagrangian Eulerian (ALE) description is employed to efficiently tracking 

the burning process along grain surface. An automatic re-meshing algorithm is added to 

the FSbI process to accurately analyze unsteady fluid-structure coupling phenomena 

with deforming solid grain during simulation. The developed solver is then applied to 

the full-burning simulation of a solid propellant grain, which is a highly-coupled 

unsteady phenomenon between gas flow and propellant structure. Based on the 

integrated computed results, detailed ignition mechanism and flame propagation 
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process along propellant grain surface are investigated. In particular, flame propagation 

delay and secondary burning phenomena are explained from the physical and 

numerical perspectives. Furthermore, virtual contact line method is introduced to 

overcome the boots contact problem occurring in the gas flow-propellant interaction, 

and the deforming behavior of full-burning solid propellant is examined. 

 
 
 
Keywords: Solid propellant rocket, Fluid-structure interaction, Arbitrary 

Lagrangian-Eulerian method, Common-refinement data transfer, 
Dynamic mesh treatment 
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Nomenclature  
χ  = the coordinate of  referential domain 

ρ  = density 

c  = relative velocity between material velocity and mesh velocity 

v  = velocity of flow particle 

E  = total energy of flow particle 

σ  = Cauchy stress tensor 

b  = specific body force 

ξ  = coordinate of reference domain 

u  = magnitude of displacement of reference domain 

û  = magnitude of displacement of referential domain 

u
X
∂
∂

 = the displacement vector 

X
t

∂
∂

 = the mesh velocity 

X̂  = mapping function of mesh motion 

ijklC  = elastic constant 

f  = applied external force 

F = inviscid flux vectors 

G = viscous flux vectors 
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xv  = x-directional velocity component of fluid particle 

yv  = y-directional velocity component of fluid particle 

τ f = shear stress tensor of fluid particle 

iλ  = principal stretch 

0
nσ  = elastic component of stress 

n
jh  = visco-elastic stress contribution of the j-th Maxwell element 

τ  = the ratio of the damping to the spring coefficient 

jγ  = the ratio of the Maxwell device modulus 

cp = the specific heat 

M = the mass flux per unit area of solid propellant 

sλ  = the thermal conductivity of propellant 

h = the film coefficient of propellant surface 

   eT  = temperature of fluid domain at fluid-solid interface 

sT  = the temperature of solid surface at fluid-solid interface 

*T  = the flame temperature 

0
*T  = the adiabatic flame temperature 

rbs = the steady state burning rate 

refp  = the reference pressure for burning rate calculation 
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ts = traction of solid surface at fluid-solid interface 

tf = traction of fluid surface at fluid-solid interface 
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Chapter I 

INTRODUCTION 

1.1 Fluid-structure simulation for solid rocket interior 

Solid propellant rockets produce thrust force by burning contained propellant 

grain in combustion chamber, and by ejecting high-speed gas through supersonic 

nozzle. Due to the nonlinear visco-elastic behavior of propellant grain and the hot 

exhaustion gas formed during burning process, complex multi-physical phenomena 

occur in the interior of combustion chamber during ignition process [1].  

 

At the early stage of ignition, deformation of propellant grain is observed near 

Figure 1.1 The component of solid rocket motor  

(https://engineering.purdue.edu/~propulsi/propulsion/rockets/solids.html) 
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igniter. Soon thereafter, a high-pressure flow, is explosively generated by flame 

propagation along the entire grain surface, imposes severe structural load on the solid 

propellant, and the grain becomes globally deformed. In addition, the burning process 

of the grain surface reduces the volume of the contained propellant and changes its 

shape [2]. Thus, it is extremely complicated to accurately predict the deformed shape 

of the propellant grain during combustion process. Additionally, the volumetric 

deformation of the propellant grain leads to a change of fluid domain, and flow 

characteristics are significantly varied. The flow characteristics due to burning process 

and domain deformation trigger a change in burning rate and pressure distribution on 

the propellant surface. Consequently, major factors governing the multi-physics inside 

solid rocket are the high-temperature and high-pressure gas flow, the structural 

deformation of the propellant grain, and the combustion process between the gas flow 

and the propellant. Each module (fluid, structure, and combustion) generates a non-

linear feedback cycle by influencing one another. As a result, the interior phenomena in 

solid rocket exhibit highly unsteady, multi-scale, and multi-physics features. Such 

multi-physical process takes place during a very short period after ignition, and most of 

the unexpected abnormal accidents leading to fatal malfunction (for example, crack 

development, deflagration to detonation transition, and so on) occur at this period [3]. 

Thus, an in-depth understanding on the multi-physical behavior inside rocket 

combustion chamber is extremely important. 

Due to physical complexity and strong interactions among multiple disciplines, 

much of the previous researches have been heavily dependent on experiments, while 

numerical analyses have been conducted to show some limited feature around specific 

physical region [4-6]. Experimental research, however, can be dangerous and 

expensive to perform, and it is not easy to measure all physical quantities that are 

necessary to investigate the physical phenomena inside rocket motor. On the other hand, 
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most of the previous numerical researches mainly focused on unveiling single physics 

that is highly restrictive in understanding physical phenomena as a whole [7, 8]. This 

manifests the necessity of an integrated simulation by coupling fluid, structure and 

combustion. From this perspective, the present dissertation intends to develop an 

integrated analysis solver by coupling fluid, structure and combustion module to 

understand the unsteady features in combustion chamber and to investigate the multi-

physical phenomena taking place inside the chamber during solid rocket operation [9, 

10]. 

 

 

In order to develop the integrated analysis solver, key numerical components are 

firstly developed. The Arbitrary Lagrangian Eulerian (ALE) kinematical description, 

which combines the advantages of classical Lagrangian and Eulerian ones, is adopted 

Figure 1.2 The concept of FSI simulation procedure                            

for solid rocket interior phenomena 
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for the clear delineation of dynamic fluid-structure surface. A 2-D axisymmetric 

unstructured code based on the ALE formulation is developed as a flow solver, and the 

ALE-based, nonlinear elastic/visco-elastic code is also developed for structure module. 

A 1-D based transient burning model and regression model are adopted to efficiently 

simulate the combustion process along the propellant-fluid boundary. In addition, a 

robust and efficient automatic re-meshing program is developed to handle deformable 

geometry while maintaining the initial mesh quality. A data transfer scheme along the 

non-matching interfaces between fluid and solid interface is also implemented. Each 

fluid, structure and combustion module is combined by a staggered time-marching 

procedure. The integrated program is then applied to the simulation of a 2-D 

axisymmetric solid rocket interior model including a pyrogen type igniter. 

Computational results are presented to show the burning process and characteristics 

along the propellant grain surface, the flow development process inside combustion 

chamber, and the structural deformation and burnback tendency of the propellant grain 

from the initial to the full burning state. 
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1.2 Dissertation Objectives: A Summary  

In order to develop the integrated analysis solver, key numerical components are 

firstly developed. The Arbitrary Lagrangian Eulerian (ALE) kinematical description, 

which combines the advantages of classical Lagrangian and Eulerian ones, is adopted 

for the clear delineation of dynamic fluid-structure surface. A 2-D axisymmetric 

unstructured code based on the ALE formulation is developed as a flow solver, and the 

ALE-based, nonlinear elastic/visco-elastic code is also developed for structure module. 

A 1-D based transient burning model and regression model are adopted to efficiently 

simulate the combustion process along the propellant-fluid boundary. In addition, a 

robust and efficient automatic re-meshing program is developed to handle deformable 

geometry while maintaining the initial mesh quality. A data transfer scheme along the 

non-matching interfaces between fluid and solid interface is also implemented. Each 

fluid, structure and combustion module is combined by a staggered time-marching 

procedure. The integrated program is then applied to the simulation of a 2-D 

axisymmetric solid rocket interior model including a pyrogen type igniter. 

Computational results are presented to show the burning process and characteristics 

along the propellant grain surface, the flow development process inside combustion 

chamber, and the structural deformation and burnback tendency of the propellant grain 

from the initial to the full burning state. 
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1.3 Outline of Dissertation 

After introduction about complex coupled physics inside chamber and fluid-

structure interaction simulation, the basic ideas of arbitrary Lagrnagian-Eulerian 

method, a hybrid approach combining the advantages of the Lagrangian and Eulerian 

formulations, are introduced with classical kinematical description and the changes of 

governing equations in chapter 2.  

The chapter 3 explains various numerical schemes and techniques which are used 

in fluid-structure interaction simulation considering combustion effect of solid 

propellant. Firstly, numerical schemes used for the fluid analysis modules are shown. 

Secondly, the structural analysis method, non-linear hyper-elastic model and visco-

elastic model, is explained. After that, the combustion model, the virtual 1-D burning 

model is described briefly. Data transfer schemes and temporal integrated schemes use 

in the coupling simulations would be follows. Finally, a mesh automation technique 

and a handling of surface mesh node are explained.   

The chapter 4 contains numerical simulation results. Firstly, the validation problem 

for FSI capability (panel flutter) will be shown. After then, at the solid rocket 

modelling and thermal analysis results will be explained. Finally, conclusions of this 

dissertation and some suggestion for future work are given in chapter 5.
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Chapter II 

 NUMERICAL METHOD I  
 

2.1 The arbitrary Lagrangian-Eulerian method  

The numerical simulation of multi-dimensional and multi-physics problems in fluid 

dynamics and nonlinear solid mechanics often requires coping with strong distortions 

of the continuum under consideration while allowing for a clear delineation of free 

surfaces and fluid–fluid, solid–solid, or fluid–structure interfaces. A fundamentally 

important consideration when developing a computer aided analysis program for 

simulating problems in this class is the choice of an appropriate kinematical description 

of the continuum. In fact, such a choice determines the relationship between the 

deforming continuum, the finite grid and mesh of computing zones, and thus conditions 

the ability of the numerical method to deal with large distortions and provide an 

accurate resolution of material interfaces and moving boundaries.  

The algorithms of continuum mechanics usually make use of two classical 

descriptions of motion: the Lagrangian description and the Eulerian description. The 

arbitrary Lagrangian–Eulerian (ALE, in short) description was developed in an attempt 

to combine the advantages of the above classical kinematical descriptions, while 

minimizing their respective drawbacks as far as possible. Lagrangian algorithms, in 

which each individual node of the computational mesh follows the associated material 

particle during motion (Figure 2.1), are mainly used in structural mechanics. The 

Lagrangian description allows an easy tracking of free surfaces and interfaces between 

different materials. It also facilitates the treatment of materials with history-dependent 

constitutive relations. Its weakness is its inability to follow large distortions of the 
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computational domain without recourse to frequent remeshing operations. Eulerian 

algorithms are widely used in fluid dynamics. Here, as shown in Figure 2.1, the 

computational mesh is fixed and the continuum moves with respect to the grid. In the 

Eulerian description, large distortions in the continuum motion can be handled with 

relative ease, but generally at the expense of precise interface definition and the 

resolution of flow details. [12,13,48-51] 

Figure 2.1 One dimensional example of Lagrangian, Eulerian 

and ALE mesh and particle motion 
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Because of the shortcomings of purely Lagrangian and purely Eulerian descriptions, 

a technique has been developed that succeeds, to a certain extent, in combining the best 

features of both the Lagrangian and the Eulerian approaches. Such a technique is 

Figure 2.2 Lagrangian versus ALE description: (a) initial FE 

mesh: (b) ALE mesh at t = 1 ms; (c) Lagrangian mesh at t = 1 ms; 

(d) details of interface in Lagrangian description [12] 
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known as the arbitrary Lagrangian–Eulerian (ALE) description. In the ALE description, 

the nodes of the computational mesh may be moved with the continuum in normal 

Lagrangian fashion, or be fixed in Eulerian manner, or, as suggested in Figure 2.1, be 

moved in some arbitrarily specified way to give a continuous rezoning capability. 

Because of this freedom in moving the computational mesh offered by the ALE 

description, greater distortions of the continuum can be handled than would be allowed 

by a purely Lagrangian method, with more resolution than that afforded by a purely 

Eulerian approach. The simple example in Figure 2.2 illustrates the ability of the ALE 

description to accommodate significant distortions of the computational mesh, while 

preserving the clear delineation of interfaces typical of a purely Lagrangian approach. 

A coarse finite element mesh is used to model the detonation of an explosive charge in 

an extremely strong cylindrical vessel partially filled with water. A comparison is made 

of the mesh configurations at time t = 1.0 ms obtained respectively, with the ALE 

description (with automatic continuous rezoning) and with a purely Lagrangian mesh 

description. As further evidenced by the details of the charge–water interface, the 

Lagrangian approach suffers from a severe degradation of the computational mesh, in 

contrast with the ability of the ALE approach to maintain quite a regular mesh 

configuration of the charge–water interface. 
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2.2 Descriptions of motion 

Since the ALE description of motion is a generalization of the Lagrangian and 

Eulerian descriptions, we start with a brief reminder of these classical descriptions of 

motion. I closely follow the presentation by Donea and Huerta [52]. 

 

 
2.2.1. Lagrangian and Eulerian viewpoints 

Two domains are commonly used in continuum mechanics: the material domain 

RX⊂ Rnsd , with nsd spatial dimensions, made up of material particles X, and the spatial 

domain Rx , consisting of spatial points x.  

The Lagrangian viewpoint consists of following the material particles of the 

continuum in their motion. To this end, one introduces, as suggested in Figure 2.3, a 

computational grid, which follows the continuum in its motion, the grid nodes being 

permanently connected to the same material points. The material coordinates, X, allow 

us to identify the reference configuration, RX . The motion of the material points relates 

the material coordinates, X, to the spatial ones, x. It is defined by an application ϕ  

such that 

Figure 2.3 Lagrangian description of motion 
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0 0: [ , ] [ , ]

( , ) ( , ) ( , )

ϕ

ϕ
Χ × ×

Χ Χ =





final x finalR t t R t t
t t x t

                       (2.1) 

 

which allows us to link X and x in time by the law of motion, namely  

 
( , ),= =x x X t t t                             (2.2) 

 

which explicitly states the particular nature of ϕ : first, the spatial coordinates x 

depend both on the material particle X and time t, and, second, physical time is 

measured by the same variable t in both material and spatial domains. For every fixed 

instant t, the mapping ϕ  defines a configuration in the spatial domain. It is 

convenient to employ a matrix representation for the gradient of ϕ , 

 

( , ) 0 1

ϕ
∂ 

∂  = ∂ ∂  
 

T

x v
X

X t
                        (2.3) 

 

where 0T is a null row-vector and the material velocity v is 

 

( , ) ∂
=
∂ x

xv X t
t

                          (2.4) 

 

With x meaning “holding the material coordinate x fixed”. Obviously, the one-to-

one mapping ϕ  must verify det(∂x/∂X) > 0 (nonzero to impose a one-to-one 

correspondence and positive to avoid orientation change of the reference axes) at each 
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point X and instant t > t0. This allows us to keep track of the history of motion and, by 

the inverse transformation (X, t) = 1ϕ− (x, t), to identify, at any instant, the initial 

position of the material particle occupying position x at time t . 

Since the material points coincide with the same grid points during the whole motion, 

there are no convective effects in Lagrangian calculations: the material derivative 

reduces to a simple time derivative. The fact that each finite element of a Lagrangian 

mesh always contains the same material particles represents a significant advantage 

from the computational viewpoint, especially in problems involving materials with 

history-dependent behavior. This aspect is discussed in detail by Bonet and Wood [53]. 

However, when large material deformations do occur, for instance vortices in fluids, 

Lagrangian algorithms undergo a loss in accuracy, and may even be unable to finish a 

calculation, due to excessive distortions of the computational mesh linked to the 

material. 

The difficulties caused by an excessive distortion of the finite element grid are 

overcome in the Eulerian formulation. The basic idea in the Eulerian formulation, 

which is very popular in fluid mechanics, consists in examining, as time evolves, the 

physical quantities associated with the fluid particles passing through a fixed region of 

space. In an Eulerian description, the finite element mesh is thus fixed and the 

continuum moves and deforms with respect to the computational grid. The 

conservation equations are formulated in terms of the spatial coordinates x and the time 

t . Therefore, the Eulerian description of motion only involves variables and functions 

having an instantaneous significance in a fixed region of space. The material velocity v 

at a given mesh node corresponds to the velocity of the material point coincident at the 

considered time t with the considered node. The velocity v is consequently expressed 

with respect to the fixed-element mesh without any reference to the initial 

configuration of the continuum and the material coordinates X: v = v(x, t). 
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Since the Eulerian formulation dissociates the mesh nodes from the material 

particles, convective effects appear because of the relative motion between the 

deforming material and the computational grid. Eulerian algorithms present numerical 

difficulties due to the nonsymmetric character of convection operators, but permit an 

easy treatment of complex material motion. By contrast with the Lagrangian 

description, serious difficulties are now found in following deforming material 

interfaces and mobile boundaries. 

 

 
2.2.2 ALE kinematical description 

The above reminder of the classical Lagrangian and Eulerian descriptions has 

highlighted the advantages and drawbacks of each individual formulation. It has also 

shown the potential interest in a generalized description capable of combining at best 

the interesting aspects of the classical mesh descriptions while minimizing their 

drawbacks as far as possible. Such a generalized description is termed arbitrary 

Lagrangian–Eulerian (ALE) description. ALE methods were first proposed in the finite 

difference and finite volume context. Original developments were made, among others, 

by Noh [53], Franck and Lazarus [54], Trulio [55], and Hirt et al. [12]; this last 

contribution has been reprinted in 1997. The method was subsequently adopted in the 

finite element context and early applications are to be found in the work of Donea et al. 

[13], Belytschko and Kennedy [48], and Hughes et al. [56]. 
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In the ALE description of motion, neither the material configuration RX nor the 

spatial configuration Rx  is taken as the reference. Thus, a third domain is needed: the 

referential configuration Rχ where reference coordinates χ are introduced to identify 

the grid points. Figure 2.4 shows these domains and the one-to-one transformations 

relating the configurations. The referential domain Rχ is mapped into the material and 

spatial domains by Ψ  and Φ , respectively. The particle motion ϕ may then be 

expressed as ϕ  = 1−Φ Ψ , clearly showing that, of course, the three mappings Φ , 

Ψ , and ϕ  are not independent. The mapping of Φ  from the referential domain to 

the spatial domain, which can be understood as the motion of the grid points in the 

spatial domain, is represented by  

 

0 0: [ , ] [ , ]

( , ) ( , ) ( , )
χ

χ χ

Φ × ×

Φ =





final x finalR t t R t t
t t x t

                    (2.5) 

Figure 2.4 The motion of the ALE computational 

mesh is independent of the material motion. [12] 
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and its gradient is 

 

ˆ
( , )

0 1
χ

χ

∂ 
∂Φ  ∂=  ∂  

 
T

x v
t

                        (2.6) 

 

where now, the mesh velocity 

 

ˆ( , )
χ

χ ∂
=
∂
xv t
t

                          (2.7) 

 

is involved. Note that both the material and the mesh move with respect to the 

laboratory (spatial). Thus, the corresponding material and mesh velocities have been 

defined by deriving the equations of material motion and mesh motion respectively 

with respect to time (see equations 2.4 and 2.7). Finally, regarding Ψ , it is convenient 

to represent directly its inverse 1−Ψ , 

 
1

0 0

1

[ , ] [ , ]

( , ) ( , ) ( , )
χ

χ

−

−

Ψ = × ×

Ψ =





X final finalR t t R t t

X t X t t
            (2.8) 

 

and its gradient is 

 

1

( , ) 0 1

χ

χ

− ∂ 
∂Ψ  = ∂ ∂  

 
T

w
X

t
                       (2.9) 
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where the velocity w is defined as 

 
χ∂

=
∂ X

w
t

                         (2.10) 

 

and can be interpreted as the particle velocity in the referential domain, since it 

measures the time variation of the referential coordinate χ holding the material particle 

X fixed. The relation between velocities ˆ,v v , and w can be obtained by differentiating 

ϕ  = 1−Φ Ψ , 

 
1

1

1

( , ) ( ( , )) ( , )
( , ) ( , ) ( , )

( , )) ( , )
( , ) ( , )

ϕ
χ

χ
χ

−
−

−

∂ ∂Φ ∂Ψ
= Ψ

∂ ∂ ∂

∂Φ ∂Ψ
=
∂ ∂

X t X t X t
X t t X t

t X t
t X t

            (2.11) 

 

or, in matrix format: 

  

ˆ

0 1 0 10 1T TT

xx vv w
X X

χ
χ
∂ ∂ ∂   

    ∂=∂ ∂            

           (2.12) 

 

which yields, after block multiplication, 

 

ˆ xv v w
χ
∂

= + ⋅
∂

    (2.13) 

This equation may be rewritten as 
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ˆ: xc v v w
c
∂

= − = ⋅
∂

   (2.14) 

 

thus defining the convective velocity c, that is, the relative velocity between the 

material and the mesh. The convective velocity c (see equation 2. 14), should not be 

confused with w (see equation 2. 10). As stated before, w is the particle velocity as 

seen from the referential domain Rχ, whereas c is the particle velocity relative to the 

mesh as seen from the spatial domain Rx (both v and v̂  are variations of coordinate x). 

In fact, equation (2. 14) implies that c = w if and only if ∂x/∂χ = I (where I is the 

identity tensor), that is, when the mesh motion is purely translational, without rotations 

or deformations of any kind. 

After the fundamentals on ALE kinematics have been presented, it should be 

remarked that both Lagrangian or Eulerian formulations may be obtained as particular 

cases. With the choice Ψ  = I , equation (2.3) reduces to X ≡ χ and a Lagrangian 

description results: the material and mesh velocities, equations (2.4) and (2.7), coincide, 

and the convective velocity c (see equation 2.14), is null (there are no convective terms 

in the conservation laws). If, on the other hand, Φ = I , equation (2.2) simplifies into x 

≡ χ, thus implying a Eulerian description: a null mesh velocity is obtained from 

equation (2.7) and the convective velocity c is simply identical to the material velocity 

v. In the ALE formulation, the freedom of moving the mesh is very attractive. It helps 

to combine the respective advantages of the Lagrangian and Eulerian formulations. 

This could, however, be overshadowed by the burden of specifying grid velocities well 

suited to the particular problem under consideration. As a consequence, the practical 

implementation of the ALE description requires that an automatic mesh-displacement 

prescription algorithm be supplied. 
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 2.3 The fundamental ALE equation 

In order to express the conservation laws for mass, momentum, and energy in an 

ALE framework, a relation between material (or total) time derivative, which is 

inherent in conservation laws, and referential time derivative is needed. 

 

 
2.3.1 Material, spatial, and referential time derivatives 

In order to relate the time derivative in the material, spatial, and referential domains, 

let a scalar physical quantity be described by f (x, t), f* (χ, t), and f** (X, t) in the 

spatial, referential, and material domains respectively. Stars are employed to emphasize 

that the functional forms are, in general, different. Since the particle motion ϕ is a 

mapping, the spatial description f (x, t), and the material description f∗∗(X, t) of the 

physical quantity can be related as  

 
** **( , ) ( ( , ), )f X t f X t t or f fϕ ϕ= =              (2.15) 

 

The gradient of this expression can be easily expressed as ∂f 

 
**

( , ) ( , ) ( , )
( , ) ( , ) ( , )

f fX t x t X t
X t x t X t

ϕ∂ ∂ ∂
=

∂ ∂ ∂
           (2.16) 

 

which is amenable to the matrix form 

 

** **

0 1T

x vf f f f
X

X t x t

∂  ∂ ∂ ∂ ∂  = ∂    ∂ ∂ ∂ ∂     

        (2.17) 
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which renders, after block multiplication, the first expression, which is obvious, that is, 

(∂f∗∗/∂X) = (∂f/∂x)(∂x/∂X); however, the second one is more interesting: 

 
**f f f v
t t x

∂ ∂ ∂
= + ⋅

∂ ∂ ∂
                        (2.18) 

 

Note that this is the well-known equation that relates the material and the spatial time 

derivatives. Dropping the stars to ease the notation, this relation is finally casted as 

 

X x

f f df fv f or v f
t t dt t

∂ ∂ ∂
= + ⋅∇ = + ⋅∇

∂ ∂ ∂
    (2.19) 

 

which can be interpreted in the usual way: the variation of a physical quantity for a 

given particle X is the local variation plus a convective term taking into account the 

relative motion between the material and spatial (laboratory) systems. Moreover, in 

order not to overload the rest of the text with notation, except for the specific sections, 

the material time derivative is denoted as 

 

:
X

d
dt t
⋅ ∂ ⋅
=
∂

                          (2.20) 

 

and the spatial time derivative as 

 

:
x

d
dt t
⋅ ∂ ⋅
=
∂

               (2.21) 
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The relation between material and spatial time derivatives is now extended to include 

the referential time derivative. With the help of mapping �, the transformation from the 

referential description f∗ (χ, t) of the scalar physical quantity to the material description 

f∗∗ (X, t) can be written as  

 
** * 1f f −= Ψ                     (2.22) 

 

and its gradient can be easily computed as 

 
** * 1

( , ) ( , ) ( , )
( , ) ( , ) ( , )

f fX t t X t
X t t X t

χ
χ

−∂ ∂ ∂Ψ
=

∂ ∂ ∂
                (2.23) 

 

or, in matrix form 

 

** ** * *

0 1T

wf f f f
X

X t t

χ

χ

∂    ∂ ∂ ∂ ∂  = ∂    ∂ ∂ ∂ ∂      

                 (2.24) 

 

which renders, after block multiplication, 

 
** * *f f f w
t t χ

∂ ∂ ∂
= + ⋅

∂ ∂ ∂
                     (2.25) 

 

Note that this equation relates the material and the referential time derivatives. 

However, it also requires the evaluation of the gradient of the considered quantity in 

the referential domain. This can be done, but in computational mechanics it is usually 

easier to work in the spatial (or material) domain. Moreover, in fluids, constitutive 
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relations are naturally expressed in the spatial configuration and the Cauchy stress 

tensor, which will be introduced next, is the natural measure for stresses. Thus, using 

the definition of w given in equation (2.14), the previous equation may be rearranged 

into 

 
** * *f f f c
t t x

∂ ∂ ∂
= + ⋅

∂ ∂ ∂
                       (2.26) 

 

The fundamental ALE relation between material time derivatives, referential time 

derivatives, and spatial gradient is finally cast as (stars dropped) 

 

X

f f f fc c f
t t x tcc

∂ ∂ ∂ ∂
= + ⋅ = + ⋅∇

∂ ∂ ∂ ∂
                (2.27) 

 

and shows that the time derivative of the physical quantity f for a given particle X, that 

is, its material derivative, is its local derivative (with the reference coordinate χ held 

fixed) plus a convective term taking into account the relative velocity c between the 

material and the reference system. This equation is equivalent to equation (2.19) but in 

the ALE formulation, that is, when (χ, t) is the reference.  

 

 
2.3.2 Time derivative of integrals over moving volumes 

To establish the integral form of the basic conservation laws for mass, momentum, and 

energy, we also need to consider the rate of change of integrals of scalar and vector 

functions over a moving volume occupied by fluid. Consider thus a material volume Vt 

bounded by a smooth closed surface St whose points at time t move with the material 
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velocity v = v(x, t) where x ∈ St. A material volume is a volume that permanently 

contains the same particles of the continuum under consideration. The material time 

derivative of the integral of a scalar function f (x, t) (note that f is defined in the spatial 

domain) over the time-varying material volume Vt is given by the following well-

known expression, often referred to as Reynolds transport theorem  

 
( , )( , )

( , )
t c t

c t

V V V

S S

d f x tf x t dV dV
dt t

f x t v n dS

≡

≡

∂
=

∂
+ ⋅

∫ ∫
∫

     (2.28) 

which holds for smooth functions f (x, t). The volume integral in the right-hand side is 

defined over a control volume Vc (fixed in space), which coincides with the moving 

material volume Vt at the considered instant, t, in time. Similarly, the fixed control 

surface Sc coincides at time t with the closed surface St bounding the material volume 

Vt . In the surface integral, n denotes the unit vector outward normal to the surface St at 

time t, and v is the material velocity of points of the boundary St. The first term in the 

right-hand side of expression (2.28) is the local time derivative of the volume integral. 

The boundary integral represents the flux of the scalar quantity f across the fixed 

boundary of the control volume Vc ≡ Vt . 

Noting that 

 

( , ) ( )
c cS V

f x t v n dS f v dV⋅ = ∇ ⋅∫ ∫     (2.29) 

one obtains the alternative form of Reynolds transport theorem: 

 
( , )( , ) ( )

t c tV V V

d f x tf x t dV f v dV
dt t≡

∂ = +∇ ⋅ ∂ ∫ ∫        (2.30) 
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Similar forms hold for the material derivative of the volume integral of a vector 

quantity. Analogous formulae can be developed in the ALE context, that is, with a 

referential time derivative. In this case, however, the characterizing velocity is no 

longer the material velocity v, but the grid velocity v̂ . 
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2.4 The ALE forms of governing equations 

The ALE description is a hybrid approach combining the advantages of the 

Lagrangian and Eulerian formulations. In Lagrangian approach, each node of 

computational mesh is attached to continuum particles and moves with them, while, in 

Eulerian approach, mesh nodes remain fixed as continuum particles pass through them. 

Considering the fact that some grain particles are eroded due to the burnback of 

propellant surface, neither Lagrangian nor Eulerian approach can properly describe the 

process of solid propellant burning. In the ALE approach, numerical simulation is 

firstly conducted in Eulerian manner while deformation of computational mesh is 

described by Lagrangian pattern. It thus provides a numerical setting suitable for 

simulating the burning of solid propellant [11]. 

Since the ALE transformation procedure is well described in some of the previous 

researches [12], we are going to present the final modified ALE form of the Navier-

Stokes equations for fluid simulation and the virtual work equation for structure 

simulation. Firstly, the modified ALE form of the Navier-Stokes equations can be 

written as follows. 

 

  
0

V S

dV c ndS
t c

ρ ρ∂
+ ⋅ =

∂ ∫ ∫
,  

 
( )

V S V

vdV vc ndS b dV
t c

ρ ρ σ ρ∂
+ ⋅ = ∇ ⋅ +

∂ ∫ ∫ ∫
,  

     
( )( )

V S V

EdV Ec ndS v b v dV
t c

ρ ρ ρ σ∂
+ ⋅ = ⋅ +∇ ⋅ ⋅

∂ ∫ ∫ ∫
,       (2.31) 
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where  ρ is the mass density, v  is the material velocity vector, σ  denotes the 

Cauchy stress tensor, b  is the specific body force vector, E  is the specific total 

energy, and c is the relative velocity between material and mesh velocity. Arbitrary 

motion of computational mesh is reflected into the convective terms of the left-hand-

side of the governing equations, which makes the numerical implementation of the 

ALE description quite efficient. 

 Secondly, the virtual work equation for solid analysis is given as follows.  

 

  
2

2

ˆ

T

i i
i ij i i

jV V V

u uu dV dV f u da
t X

dρ d σ d
∂

∂ ∂
+ =

∂ ∂∫ ∫ ∫            (2.32) 

 

Like the preceding Navier-Stokes equations, only the acceleration term of the 

virtual work equation (the first term of Eqn. (2.32)) is converted into the ALE form (or 

the first eight terms of the left-hand side of Eqn. (2.33)) as follows [13]. 

                                                                      

 



   

   

 

2 2

2

2

2

2

ˆ ˆ
2

2

ji i
i i

jV V

k j k ji i
k i i

j j kV V

k j k ji i i
i

j k j kV V

ki

k j

u u Xu dV u dV
t t X t

u uX X X Xn u da u dV
X t t X t X t

u u uX X X Xu dV dV
X t t X X t t X

u X X
X t X

a

a

a

a

a

a

a

a

ξρ d ρ d
ξ

ξρ d ρ d
ξ

ξ dρ d ρ
ξ

ξρ
ξ

∂

∂ ∂ ∂ ∂
−

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂∂ ∂ ∂ ∂
+ −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂∂ ∂ ∂ ∂
− −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂
+

∂ ∂ ∂ ∂

∫ ∫

∫ ∫

∫ ∫


2

2

T

j ji
i i

jV V

k i
ijkl i i iV

j jV

u Xu dV u dV
t X t

u uC u dV f u da
X X

d ρ d

d d d
∂

∂ ∂
−

∂ ∂ ∂

∂ ∂
+ =

∂ ∂

∫ ∫

∫ ∫

     (2.33) 
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Here, ρ  is the solid density, 
u
X
∂
∂

 is the displacement vector, 
X
t

∂
∂

 is the mesh 

velocity, ξ  is the coordinate of reference domain, and ijklC  is the elastic modulus of 

solid. The first term of Eqn. (2.33) is the ALE mass matrix, the second term is the 

damping force vector and the others of the left-hand side are related to the internal 

force. The right-hand-side term indicates the specific external force. 
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Chapter III 

NUMERICAL METHODS II  

3.1 Fluid solver 

We consider two-dimensional axisymmetric compressible flows for the interior 

combustion chamber. Since the mass flux from the exposed grain boundary will sweep 

away boundary layer, we may assume viscous effect after ignition is relatively small 

near grain surface, and thus the inviscid flow solver can provide basic flow features. At 

the early stage of ignition process, however, flow physics including viscous and 

turbulence effects does influence the outbreak of the burning at grain surface and 

ignition delay time. Thus, both inviscid and viscous simulations have been performed. 

The modified ALE form of the two-dimensional Navier-Stokes equations is as follows. 

 

 ( ) ( )tu div F div K+ = ,                   (3.1) 

 

where u is the state vector, and F and K are the inviscid and viscous flux vectors, 

respectively. 

   

         

0 0

ˆ ˆ.xx xy

yy yy

xx yy x yx yy y

K i j

u v q u v q

τ τ
τ τ

τ τ τ τ

   
   
   = +   
      + − + −   

.          
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0 0

ˆ ˆ.xx xy

yy yy

xx yy x yx yy y

K i j

u v q u v q

τ τ
τ τ

τ τ τ τ

   
   
   = +   
      + − + −   

           (3.2) 

 

Here, vxc, vyc is the relative velocity between the material velocity and the mesh 

velocity, and K = 0 if the flow is inviscid. The 3rd-order TVD Runge-Kutta explicit 

scheme and Point Gauss-Seidel implicit scheme are used for time marching. As a 

spatial flux scheme, AUSMPW+ by Kim et al. is used to accurately capture physical 

discontinuities without numerical oscillation [14-16]. 

 

 

3.1.1 Spatial Discretization 

As shown in Eq. (3.2), the governing equations can be decomposed to the inviscid 

flux term and the viscous flux term. The inviscid flux term F can be separated in the x-, 

y-, and z- directions and are discretized with a finite volume method based approach. 

For convenience Inviscid flux term F divided into three direction terms of E, F, and, G. 

The local flux balance of each cell is 
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1 1, , , ,
2 2, ,

1 1, , , ,
2 2

1 1, , , ,
2 2

i j k i j k
i j k

i j k i j k

i j k i j k

E F G E E
x y z

F F

G G

+ −

+ −

+ −

 ∂ ∂ ∂
+ + = − ∂ ∂ ∂ 

+ −

+ −

 

 

 

     (3.3) 

 

Because Eq. (3.3) is in a central-differenced form and in non-dissipative by itself, the 

inviscid fluxes should be modified to cell surface fluxes by explicitly adding the 

numerical dissipation term as follows: 

 

( ) ( ) ( ) ( )1 1 1 1, ,
2

1 ˆˆ ˆ ,
2 i i i i i ii j k

E E Q E Q A Q Q Q Q+ + +
+

 = + − − 
        (3.4) 

 

where the matrix 1
ˆ( , )i iA Q Q + is the flux Jacobian matrix, and the inviscid flux is 

upwind-differenced. In this work, two types of flux schemes of Roe’s FDS and RoeM 

are usually used for the spatial discretization 

 

 

3.1.1.1 Roe’s Flux Difference Splitting 

Roe’s Flux Difference Splitting (FDS) scheme is based on the approximate solution 

of Riemann problem. Instead of solving the exact Riemann problem iteratively, Roe 

linearized the Jacobian matrix to satisfy the following properties: 
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(1) Â  is a linear mapping to Ê  in a vector space Q  

(2) Â  satisfies consistency condition, so 1 1/2
ˆ ˆ( , ) ( )i i iA Q Q A Q+ +=  

(3) Â  has linearly independent eigenvectors and real eigenvalues. 

(4) 1 1 1
ˆ ˆ ˆ( , )( )i i i i i iA Q Q Q Q E E+ + +− = −  for any 1,i iQ Q +  

 

From the condition (4), the linearized flux Jacobian Â  can be expressed in terms 

of Roe-averaged properties ρ  and Q  as: 

 

1i iρ ρ ρ +=
                      (3.5) 

 

1 1

1

i i i i

i i

Q Q
Q

ρ ρ
ρ ρ

+ +

+

+
=

+     (3.6) 

 

From the eigenmatrix X̂  of Â , the diagonal matrix Λ  composed of eigenvalues, 

and the condition (2), the third term on the right-hand side of Eq. (3.4) is replaced into 

vector calculation as: 

 

( ) ( ) ( )1
1

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆi i k k kA Q Q Q X X X X eααα   λ−
+ − = Λ = Λ =

      (3.7) 
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By using these Roe-averaged properties the flux can be calculated as follows: 

 

( ) ( )1 1
2

1 ˆ ˆ ˆ ˆ
2 i i k k ki

E E Q E Q eα λ++
 = + − 



         (3.8) 

 

( )

4

4 5 6

4 5 7

4 5 8
2

4 5 6 7 8 1

9

10

ˆ ˆ

1

x

y

z
k k k

t

u x
v x
w x

e
aH U x u v w

a
a a a
a a a
a a a

a λ
a a a a a a

γ
a
a

 
 + + 
 + +
 + + =  

+ − + + + − 
− 

 
 
  

.     (3.9) 

 

The coefficients of α are  

 

( ) ( )
( ) ( )

1 1 2 42 2

3 5 4 1 2 32

5 2 3 6 1

7 1 8 1

9 1 10 1

,
2

,
2

,

,

,

x

y z

p p a U
a a

p a U
a

a u x U

v x U w x U

k w

ρa λ ρ a λ

ρa λ a a a a

a a a a λ ρ ρ

a λ ρ ρ a λ ρ ρ

a λ ρ a λ ρ

∆ ∆ + ∆   = ∆ − =   
   
∆ − ∆ = = + + 

 
= − = ∆ −

= ∆ − = ∆ −

= ∆ = ∆

       (3.10) 

where,  
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( )

( )

1 2 3 4,5

, , , , , ,
, , ,

,

, t x y z t x y z
t x y z t x y z

x y z

t

x x
U U a

J J
x x

U x x u x v x w x
x x x x

e pH

λ λ λ λ

ρ

∇ ∇
= = = = ±

= + + + = =
∇ + +

+=

.  (3.11) 

 

The flux vectors 1/2jF +
  and 1/2jG +

 respectively on the y- and z-directions can be 

determined with similar flux calculation. 

 

 

3.1.1.2 RoeM Scheme 
Although Roe scheme shows remarkable accuracy, it is hard to distinguish a shock 

and an expansion discontinuity because entropy condition is violated. The carbuncle 

phenomena also suffer the robustness of the original Roe scheme. In order to overcome 

these problems, Kim et al [47]. proposed an improved Roe scheme that is free from the 

shock instability and preserves the accuracy and efficiency of the original Roe scheme.  

The flux can be calculated by: 

 

( ) ( )1 2 1 *1 2
1 2

1 2 1 2

1 2

1 2

ˆ ˆ

1
1

i i
i

b E Q b E Q b bE Q
b b b b

b bg B Q
b b M

+
+

× + × ×
= + ∆

− −
×

− × ∆
− +



        (3.12) 
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*

u
Q v

w
H

ρ
ρ
ρ
ρ
ρ

 
 
 
 ∆ = ∆
 
 
 
 

, 2

1 0

ˆ

u u U
pB Q f v v U

c
w w U
H H

ρ ρ

   
   ∆ −∆   ∆    ∆ = ∆ − + ∆ −∆ 
    

∆ −∆   
   ∆   

    (3.13) 

 

Where 

( ) ( )1 1 2 1, max 0, , , max 0, ,i i
UM b U a U a b U a U aa + −= = + + = − +

 

And the functions f and g can be expressed by:  

 

2 2 2

1 2, , , 1 2, , 1 2, , , 1 2 , , 1 2

1, 1 2, 1, 1 2, 1, , 1 2 1, , 1 2

1 , 0
    ,

,

, , , , ,
              1 min

, , ,

h

i j k i j k i j k i j k i j k

i j k i j k i j k i j k

u v w
f

elsewhereM

P P P P P
h

P P P P
+ + − + −

+ + + − + + + −

 + + == 


 
= −   

 

 (3.14) 

 

, 1,

1, ,
1 min , , 0

    
, 01

i j i j

i j i j

p p
p p MMg

M

+

+

 
−   

 
 == 

≠

         (3.15) 

 

The differentiation of the flux function becomes more complicated than the original 

Roe scheme because of the function f, which considers 10 cells around the interface in 

the case of structured grid.  
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3.1.1.3 AUSMPW+ 
The AUSMPW+ flux scheme was designed to remove the non-monotonic pressure 

oscillations of the AUSM-type schemes near a wall or behind shock waves by 

introducing pressure-based weighting functions at a cell interface. Weight function f is 

introduced to treat the oscillations near a wall, and to remove the oscillation across a 

strong shock. The flux vector at a cell interface can be represented as: 

 

1 1/ 2 1/ 2
2

ˆ ˆ ˆ ˆ ˆ( )L L R R L L R RF M c M c P p P p+ − + −= F + F + +      (3.16) 

 

Where 

ˆ ˆ(         ) ,     (0        0)T T
x y zu v w H p n p n p n pρ ρ ρ ρ ρΦ = = . 

To obtain Mach numbers on the left and right side of the cell-interface, Mach 

number at the cell interface is first defined by 

 

1/2 L RM M M+ −= +
         

(3.17) 

 

and Mach numbers on the left and right side are expressed respectively: 
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if 1/ 2 0m ≥ ,  

[(1 ) (1 ) ]

(1 )
L L R R L

R R R

M M M w f f
M M w f

+ + −

− −

= + ⋅ − ⋅ + −

= ⋅ ⋅ +
       (3.18) 

If 1/ 2 0m < , 

(1 )

[(1 ) (1 ) ]
L L L

R R L L R

M M w f
M M M w f f

+ +

− − +

= ⋅ ⋅ +

= + ⋅ − ⋅ + −
      (3.19) 

 

pressure based weight function RLf ,  and w  are defined as  

 

2
, 1, 1, 2, 2,

,

min( , , , )
1 min 1,  0  ,

min( , )
                             0                                           0

L R L R L R
s

L R s L R

s

p p p p p
if p

f p p p
if p

   
 − × ≠   =    
 =

    (3.20) 

 

Where s L L R Rp P p P p+ −= +   and 1,* 2,* , p p  are the pressure values at each edge of a 

cell interface. 

Equations from (3.18) to (3.19) use the split Mach number and pressure across a 

cell interface as the input values. These values are introduces as 

 

21 ( 1) ,   M 1
4

1 ( M ),    M 1 
2

M
M

M

±

± ± ≤= 
 ± >


         (3.21)  
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21 ( 1) (2 ),   M 1
4
1 (1 sign(M)),           M 1 
2

M M
p±

 ± ⋅ ≤= 
 ± >




                (3.22) 

 

The Mach number on each side is defined as follows: 

 

,
,

1/2

L R
L R

U
M

c
=

                       (3.23)
 

 

Here, 2/1c  is the speed of sound at a cell interface and computed as 

 

*2 *2

1/ 2 * *min  , 
max( , ) max( , )L R

a ac
U a U a

 
=  

 
     (3.24) 

 

where the critical speed of sound *a  is defined to satisfy the isoenergetic condition, 

 

* 2( 1)
( 1)

a Hγ
γ
−

=
+ ,                    (3.25)                      

 

with H as the total enthalpy and U as the velocity component normal to a cell 

interface 
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3.1.1.4 Higher Order Spatial Accuracy 

Monotone Upstream-centered Schemes for Conservation Laws (MUSCL) can 

provide highly accurate numerical solution for a given system, even in the cases where 

the solutions exhibits shocks, discontinuities occurs [41]. The MUSCL scheme is 

adopted as: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1 1
2 2 2

1 1 1 1 3 2 1
2 2 2

1 1 1
4

1 1 1
4

Left
i i i i ii i i

Right
i i i i ii i i

q q q q q q

q q q q q q

κ f κ f

κ f κ f

+ −
− ++ − +

− +
+ + + ++ + +

 = + − − + + −  

 = + + − + − −  

    (3.26) 

 

where q denotes the primitive variables. When a constant κ=1/3, the order of spatial 

accuracy is third, and the second order accuracy is achieved with κ=-1, 0, 1. Especially 

at κ=1, it becomes a central difference scheme of the second order. Values of the 

primitive variables at the cell interface are modified by extrapolation, which cause an 

oscillation near physical discontinuities. To suppress this overshoot phenomenon of the 

solution, several limiters can be applied by using a function φ .  

 

 

3.1.1.5 Sparlart-Allmaras turbulence model 

The Sparlart-Allmaras turbulence model solves a single transport equation that 

determines the turbulent viscosity. This situation is in contrast to many of the early 

one-equation models that solve an equation for the transport of turbulent kinetic energy 
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and required an algebraic prescription of a length scale. 

The original model was developed primarily for the aerospace engineering , and 

has the advantage of being readily implemented in an unstructured CFD solver, unlike 

the more traditional aerospace models such as Baldwin-Lomax and Johnston-King. 

This advantage has resulted in its popularity increasing as the use of unstructured CFD 

methods has grown more widespread in the aerospace fields. 

The author of the original Sparlart-Allmaras turbulence model presented results for 

attached boundary layer and flows with mild separation (such as flow past a wing). It is 

reasonable to expect that these cares are the types of flows for which the model yields 

the best results. Wilcox presents free-shear spreading rates for the model. While 

acceptable results are obtained for wake, mixing layer and radial jet flows, the 

predicted spreading rates for plane and round jets are inaccurate. [44, 57]   

In this research, we should consider the computational cost of each solver, because 

FSbI simulations have many components to be computed in their own process. 

Therefore, we choose Sparlart-Allmaras model among 1-equation models because of 

its simplicity and relatively higher accuracy. The governing equations are follows. 

 

2

2
1 2 2

2
21

1 12

( ) 1[1 ] [ (( ) ( )))]

[ ] ( )

b t b

b
w w tt

D v c f Sv v v c v
Dt

c vc f f f q
d

σ

κ

= − + ∇⋅ + + ∇

 − − + D  





  



         (3.27) 
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The first term of right of Eqn. (3.27) means the advection, the second term is the 

production , the third is diffusion, and the last is trip (but in this research, the last trip 

term is ignored). The right-hand-side term indicates the specific external force. 

The v  is an working variable and, finally, the turbulent viscous coefficient could 

be obtained using following relations. 

 

3

3 3
1

,t
c

vv
c v

cµ ρ c
c

= =
+



                     (3.28) 

 

 

3.1.2 Time Integration Method 
In this chapter, by replacing t with τ, the implicit methods to solve the pseudo-time 

equation, Eq. (3.1), is represented with the vector of the residual R(Q) to easily 

consider the time integrating formulation as: 

 

( )1 Q R Q
J τ
∂

= −
∂

          (3.29) 

 

A first-order Euler implicit formula is used for pseudo-time derivative to form the 

matrix equation. The next consideration is the formation of the Jacobian matrix of the 

residual vector of the flux terms required for the implicit side of the resulting equation. 

However, the exact Jacobian of the flux vectors is very costly to form. 
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Instead, an approximate Jacobian of the residual vector can be used with different 

levels of approximation. Then, the matrix equation is solved using Point Gauss-Seidel 

(PGS) relaxation / TVD Runge-Kutta scheme. 

 

 

3.1.3 Pseudo-Time Discretization 

From Eq. (3.29) in the previous, the system of governing equations can be rewritten 

as: 

 

( ) ( ) ( )
11 ˆ ˆ ˆˆ ˆ ˆ ˆ 0

n

v v v
Q E E F F G G S

J τ ξ η ζ

+  ∂ ∂ ∂ ∂
+ − + − + − + = ∂ ∂ ∂ ∂ 

    (3.30) 

 

Consider a Taylor series expansion about time level n as follows:
  

 

 
1 2( )n n nEE E Q O t E A Q

Q
+  ∂
= + ∆ + ∆ ≅ + ∆ ∂ 

     (3.31) 

 

In a similar fashion the other flux vectors can be linearized as: 

 

1

1

n n

n n

F F B Q
G G C Q

+

+

≅ + ∆

≅ + ∆
   (3.32) 
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The viscous flux Jacobian in the implicit part is neglected since it does not 

influence the solution’s accuracy. Thus, the viscous flux vectors are approximated as 

follows: 

 

1

1

1

n n
v
n n

v
n n
v

E E

F F

G G

+

+

+

≅

≅

≅

        (3.33) 

 

Substituting the above linearizations to obtain 

 

( ) ( ) ( )
11 ˆˆ ˆ

ˆ 0

n

v v v

Q E A Q F B Q G C Q
J

E F G S

τ ξ η ζ

ξ η ζ

+  ∂ ∂ ∂ ∂
+ + ∆ + + ∆ + + ∆ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂
− + + + = ∂ ∂ ∂ 

  (3.34) 

 

Rewriting the Eq. (3.33) 

 

( ) ( ) ( )

( ) ( ) ( )

11

ˆ ˆˆ ˆ

n

n

v v v

Q A Q B Q C Q
J

E E F F G G S

τ ξ η ζ

ξ η ζ

+∂ ∂ ∂ ∂
+ ∆ + ∆ + ∆

∂ ∂ ∂ ∂

 ∂ ∂ ∂
= − + + + + + − ∂ ∂ ∂ 

      (3.35) 

 

and is factored as 
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( ) ( ) ( )

1

ˆ ˆ ˆˆ ˆ
n

n
v v v

A B C Q
J

E E F F G G S R

τ ξ η ζ

ξ η ζ

 ∂ ∂ ∂
+ + + ∆ ∆ ∂ ∂ ∂ 

 ∂ ∂ ∂
= − + + + + + − = − ∂ ∂ ∂ 

 (3.36) 

 

where I is the identity matrix and R stand for the residual vector including viscous 

and turbulence terms. The flux Jacobian matrices are split according to the signs of the 

eigenvalues of the flux Jacobian matrices as: 

 

1 nA A B B C C Q R
J ξ ξ η η ζ ζδδδδδδ    

τ
+ + − − + + − − + + − − + + + + + + ∆ = − ∆ 

 (3.37) 

 

Where, δdenotes a finite difference operator in each direction. 

 

 

3.1.4 Dual Time Stepping 

For time-accurate unsteady problems, pseudo-time sub-iteration strategy is adopted 

to solve the unsteady systems given by: 

 

ˆ1 ˆQ R
J t
∂

= −
∂

.                (3.38) 
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The time derivative term is differenced using a backward second-order three-point 

implicit formula and moved to the right-hand side of the equation: 

 

1
12 0.5 ˆ

n 1 n n
n1.5Q Q Q0 R

J t

+ −
+− +

= − −
∆

                (3.39) 

 

A pseudo-time derivative of Q is added on the left-hand side of Eq. (3.38): 

 

1 1
1 1 11 2 0.5 ˆˆ ˆ

n n 1 n n
n n nQ 1.5Q Q QR R S

J J tt

+ + −
+ + +∂ − +

= − − = − −
∂ ∆

  (3.40)  

 

Since the first-order discretization has better convergence properties than higher-

order in general, the pseudo-time derivative term is discretized using the first-order 

Euler implicit formula : 

 

1, 1 1,
1, 1 1, 11 ˆˆ

n m n m
n m n mQ Q R S

J τ

+ + +
+ + + +−

= − −
∆

       (3.41) 

 

where a superscript m denotes the pseudo-time iteration level. The time accuracy of 

the solution is necessary in terms of the physical time, but not in terms of the pseudo-

time. Therefore, the dual time stepping method adopted here has second-order time 

accuracy. Now, Eq. (3.41) can be rewritten as: 
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1,

1, 1, 1,
ˆˆ1 ˆˆ

n m

n m n m n mR S Q R S
J Q Qτ

+

+ + + ∂ ∂
+ + ∆ = − − ∆ ∂ ∂ 

       (3.42) 

 

For steady-state calculations, the source-like term S dropped from the equation 

because t∆  is set to infinity. Then Eq. (3.42) is simplified for the steady-state 

calculation as: 

 

ˆ1 ˆ
m

m mR Q R
J Qτ

 ∂
+ ∆ = − ∆ ∂ 

      (3.43) 
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3.2 Structural solver 

The structure part of this study was mainly performed by dedicated and competent 

co-workers. The authors appreciate the support provided by Prof. Jeeho Lee and the 

members of LASCOM of DGU. Additionally support from Prof. Changyu Hwang of 

SVU is also appreciated. 

 

3.2.1 Material models 
In general, solid propellant grain exhibits visco-elastic characteristics. In this work, 

its mechanical response is simulated using the 2nd order Mooney-Rivlin model[17, 18] 

that has been shown to be quite successful in capturing the small and large strain 

response of filled elastomers, and the generalized Maxwell visco-elastic model [19] 

that has been developed to properly describe the energy absorbing behavior of 

dissipative materials, especially polymeric rubber materials [20].  

As a hyper-elastic model, The first order Neo-Hookean model is obtained with N = 

1: 

 

110( ) ( 3)J C IΨ = Ψ + −                     (3.44) 

 

And the Cauchy stress can be written as follows. 

 

1
102 ( )pI J C dev bσ −= +                     (3.45) 
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Finally we have the elasticity stress tensor as like 

 

1
10 10

4 41 1 2 ( ) (1 ( ) ( ) 1
3 3

c p pI J C tr b P C dev b dev b−  = ⊗ − + − ⊗ + ⊗  
 .   (3.46) 

 

The strain energy density function for the general Mooney-Rivlin model can be 

written as 

 

1 2
1

( ( ) 3) ( ( ) 3) ( ( ))
N

i j
ij

j
W C I C I C KU J C

+

= − − +∑ .       (3.47) 

 

Then, the consistent tangent stiffness tensor for the 2nd-order Mooney-Rivlin [58] 

becomes 

 

2 22
1 2

2 2 24 4 W WW
C C C

σ
ε

 ∂ ∂∂ ∂
← = + ∂ ∂ ∂ ∂ 

                  (3.48) 

2 22
1 1 1 2

1 220 20 022 2 2

2
2 2 1 1 2

202 11 112

2
2 2 1

111 112

2 ( 3) 2 ( 3)

2 ( 3)

( 3)

I I I IW C I C C I
C C C C C

I I I I IC C I C
C C C C C

I I IC I C
C C C

∂ ∂ ∂ ∂∂
= − + ⊗ + −

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

+ ⊗ + − + ⊗
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
+ − + ⊗

∂ ∂ ∂

     (3.49) 
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According to the generalized Maxwell visco-elastic model [19] constituted by 

arbitrary N parallel Maxwell devices, the stress function could be separated into an 

elastic component and a visco-elastic component as follows. 

 

 1 1 1
0

1

N
n n n
i j

j
hσ σ+ + +

=

= +∑  ,                   (3.50) 

 

where 1
0
nσ +  is the elastic component, and 1n

jh +  (the visco-elastic stress contribution 

of the Maxwell element j) can be written as 

 

1

1

1 1 0
0

1 0

1
0 0

d (s) exp ds 
ds

d (s) exp( ) exp ds 
ds

1 exp( )
exp( ) [ ]

n

n

n

tn n
j j

j

tn n
j j t

j j

jn n n
j j

j

j

t sh

t st h

t
t h t

sγ
t

sγ
tt

t
γ ss

t
t

+

+

+ +

+

+

 −
= −  

 

 −∆
= − + −  

 

∆
− −

∆
≈ − + −

∆

∫

∫  .    (3.51) 

Here, 0 ( ) /d s dss  is approximated as 

 

 

1
0 0 0 0

0 0

( ) ( )lim lim
n n

s t

d s s
ds s t
ssss   +

∆ → ∆ →

∆ −
= =

∆ ∆  .            (3.52) 
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τ is the ratio of the damping coefficient to the spring coefficient, and 
0

j
j

µ
γ

µ
 
= 
 

 is 

the ratio of the Maxwell device modulus to the elastic behavior modulus. 

 

 

3.2.2 WLF models for temperature influence 
Temperature has great influence on viscoelastic behavior of a material. The 

temperature effects can be replaced by a shift factor in time ([59, 60]). For instance, for 

a E modulus, we have 

 

0( , ) ( , )E T t E T ξ=    (3.53) 

 

E (T, t) = E (T0,x), where T is the current temperature, T0 the reference temperature, x a 

reduced time defined by 

 

'

'0 ( )
t

T

dt
a t

ξ = ∫     (3.54) 

 

The aT coefficient is the shift factor. The chosen behavior is the WLF model developed 

by Williams, Landel and Ferry [61] from experiments: 
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1 0

2 0

( )log
( )T

C T Ta
C T T
− −

=
+ −

      (3.55) 

 

where C1 and C2 are constants. These constants, for a large number of polymer 

materials, are C1 = 17.4 and C2 = 51.6, the implemented shift factor is thus 

 

0

0

17.4( )log
51.6 ( )T

T Ta
T T

− −
=

+ −
    (3.56) 

 

Note that the temperatures have to be given in Celsius degrees to be coherent with the 

C1 and C2 numerical values. The validity of this model is for a temperature between T0 

and T0+100: 

0 0 100T T T< < +     (3.57) 
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3.3 Combustion solver 

While burning modeling is one of the crucial components in simulating a solid 

rocket motor, actual burning rate of the contained solid propellant is determined by 

complex physical and chemical combustion phenomena. There are several factors that 

decide the burning rate of grain, such as chamber pressure, gas velocity along the grain 

surface, and grain temperature. Although chemical reactions between grain and gases 

should be fully taken into account [21, 22] for an accurate simulation of the 

combustion process, this is too complicated and costly. Thus, in this work, pressure and 

temperature of the grain surface are considered as the key variables of the burning 

process. The reason not to include the erosive burning caused by gas velocity is that its 

influence on overall burning rate is relatively small, and some material constants can 

be obtained only by experiments. The present simulation is based on the assumption of 

homogeneous propellant grain though most solid propellants used today are classified 

as composite propellants. Ordinary composite propellant generally consists of an 

organic fuel that also serves as a binder and a solid oxidizer. High-energetic composite 

propellants also contain combustible metal particles (ex. Al particle) which increase the 

energy available for propulsion. Composite propellant has irregular constitution 

patterns of AP and HTBP, and show non-uniform flame temperature distribution on the 

grain surface [23, 24]. Thus, it is extremely difficult to draw a realistic and practical 

numerical modeling for a full-burning simulation. On the other hand, it is reported that, 
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by using well-adjusted assumption of homogeneous model, the overall tendency of 

internal ballistics of NAWC motor no. 13 could be obtained [25]. 

 

 

Figure 3.1 Combustion area locates between solid and fluid interface. 

 

A one-dimensional transient burning model [13] is used to efficiently simulate the 

burning process at an interface between the fluid domain and propellant grain. Though 

this model is based on the 1-D assumption for regression behavior and homogeneous 

propellant property, it could be applied to 2-D and 3-D grain geometry by considering 

independent 1-D lines from each node of propellant surface (see Figure 3.1). This 

model satisfies Piobert’s Law [26]. We assume that grain is heated by hot gas and 

ignited on its exposed inner surface when the temperature of the grain surface exceeds 
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some specific value. All chemical reactions are assumed to take place within a very 

short time scale, so that the flow field can be simulated using non-reacting equations. 

The regression speed of solid propellant surface, rb, is related to the surface 

temperature through the following pyrolysis law: 

 

 exp c
b c

u s

Er A
R T

 
= − 

 
 .                  (3.58) 

 

If propellant is assumed to be homogeneous, and temperature varies along the 

direction normal to the surface, so we may assume the burning process to be locally 

one-dimensional phenomenon. Letting x represent the normal distance from grain 

surface, the temperature equation for solid propellant grain is given by 

 

 
2

2s p p s
T T Tc Mc
t x x

ρ λ∂ ∂ ∂
+ =

∂ ∂ ∂
,                   (3.59) 

 

where, cp is the specific heat, M = ρs rb is the mass flux per unit area, and sλ is the 

thermal conductivity. The boundary conditions are 
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Here, Te is the temperature at fluid domain surface, sT is the temperature at solid 

surface. h is the film coefficient, *T  is the flame temperature, and 0
*T  is the adiabatic 

flame temperature. 0
*T  is associated with  *T  as follows. 

 

 0 0
* *

1 1 1 1
2

c

uc s s

E
T T R T T

θ   
− = −  

   
 .                 (3.61) 

 

The steady state surface temperature 0
sT  is evaluated by comparing the pyrolysis 

law, Eqn. (3.58), to the experimental power law. 

 

 
pn

e
bs c
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Pr A
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 
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 
 ,                  (3.62) 

 

where refp  is the reference pressure, rbs is the steady state burning rate, Pe is the 

pressure of fluid domain, and Ac and np are constants [13]. 
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Figure 3.2 The difference of boundary conditions of fluid region: pre-

ignited wall condition versus ignited mass flow rate condition 
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3.4 Spatial and temporal data transfer scheme 

In FSI simulation, a flow solver needs deformation data of structural surface, while 

a solid solver needs pressure data of fluid interface. Since mesh size between fluid and 

solid domain is not generally the same, a non-matching interface between fluid and 

solid domain should be assumed. Accurate data transfer along the non-matching mesh 

interface is an indispensable condition for successful FSI simulations [24]. This 

requires a non-oscillatory and conservative 1-D data transfer scheme along the non-

matching interface. In addition, re-meshing process in fluid and solid domain is 

necessary to maintain the initial mesh quality, which requires a 2-D data transfer 

scheme between old and new meshes. 

The essential requirements of data transfer scheme are accuracy and conservation. 

For accuracy, the magnitude of some error norm must be minimal, and for conservation, 

the sum of transferred property at both fluid and solid interface must be the same. Non-

conservative schemes, such as TPS, MQ, and Cubic-spline, may ensure accuracy, but 

suffer from the conservation requirement. With non-conservative schemes, we need 

fine meshes for both fluid and solid domain. Conservative schemes, such as node 

projection or quadrature projection schemes, may suffer from the accuracy requirement 

when fluid-solid grids mismatch along the interface. The lack of accuracy and/or 

conservation can affect computed results not only along the interface but also over the 

entire computational domain. From this perspective, common refinement data transfer 

scheme [25] is attractive since its error is almost independent of the element mismatch 

along the interface. Thus, we adopted the common refinement data transfer scheme for 

1-D data transfer at which conservation is a crucial requirement [26]. In case of 2-D 

data transfer, accuracy is much more important than conservation, and thus the cubic 

spline interpolation scheme is employed to provide a sufficient accuracy with an 
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acceptable computational cost. 

While the time step size should be determined by the CFL condition in both fluid 

and solid domain, the allowable time step of each domain is not the same [13, 18]. The 

temporal mismatch may become even larger if implicit time marching scheme is 

employed. As an efficient and robust integrated algorithm to couple temporally un-

matched solvers, we adopt conventional serial staggered scheme [27, 28]. Dirichlet 

velocity boundary condition and Neumann momentum boundary condition are 

implemented along the fluid-solid interface.  

 

s fu u=  : Dirichlet condition for displacement, 

s ft t= , where f f f f ft p n nσ= − ⋅  and s s st ns= ⋅  
: Neumann condition for traction.        (3.63) 

 
 

Figure 3.3 Loosely coupled scheme and strong coupled scheme for FSI time marching 
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Figure 3.4 Conventional serial staggered procedure 
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3.5 Dynamic mesh treatment 

For fluid simulation, unstructured mesh is adopted to handle complex geometry. 

Dynamic analysis in solid domain is performed using a 4-node rectangular element. 

The initial meshes of fluid domain are generated by the Delaunay-based triangular 

mesh generation technique with the Rebay’s point insertion method [29]. In order to 

treat substantial geometrical changes due to the deformation and burnback of grain, an 

automatic mesh update procedure has been implemented to guarantee a high quality 

mesh during simulation. The mesh regeneration procedure is performed locally when a 

certain local geometric change occurs, and entirely when global or excessive geometric 

change takes place so that the local mesh handling cannot maintain mesh quality any 

longer. The Rebay’s point insertion technique combined with the Delaunay 

triangulation based smoothing [30, 31] is used as a baseline re-meshing for fluid 

domain. For solid domain, we regenerate 4-node meshes using the Paving method. [62, 

63] 
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3.6 Surface regression model 

During burnback process, the solid propellant grain with slot geometry usually 

leads to a topological change into two sub-regions. After a while, one of the separated 

lumps is fully burned away while the other sub-region still remains. The integrated 

simulation needs the capability to handle such topological change. In addition, solid 

propellant grain has two types of corners (convex and concave corner), and each has a 

different burn back characteristic [32]. According to solid grain burning experiments, 

convex corner, from a solid grain point of view, maintains its initial corner angle, while 

concave corner is evolved into a curved surface (see Fig. 3.5). For the accurate shape 

tracking of the solid propellant grain while satisfying the Piobert’s burnback law [23], 

we developed a regression model by reproducing and/or redistributing the surface 

nodes of solid propellant to maintain high quality initial meshes. 

  Figure 3.6-(a) shows the typical problem case of convex corner. If it is burned with 

same distance along normal to the surface, the corner point loose its initial angle and 

distort the corner shape. So regression model cure this problem using neighbor points 

and their angle as shown in Figure 3.6 (b).    

 

 

 
Figure 3.5 Solid domains with corners 
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Figure 3.6 (a) problem of convex corner (b) re-positioning concept of regression model 
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3.7 Virtual contact line method 

As shown in Fig. 3.7, most solid rocket motors have a narrow crevice called the 

boots gap between the propellant grain and the rocket case. The role of the boots gap is 

known to prevent an unexpected structural failure due to severe thermal deformation. 

Thus, the unsteady behavior of the boots gap must be included in the FSbI simulation. 

The hot gas created by the propellant burning rapidly propagates to the rocket nozzle 

area. The gas flow passing the boots entrance produces a series of expansion fan and 

shock wave due to geometric constraint. In particular, the shock impingement and 

reflection act as a strong pressure load on the grain surface, and the propellant grain is 

pushed toward the vertical direction. As a result, the boots gap becomes progressively 

narrower to lead a structural contact problem. The boots contact problem is physically 

quite reasonable, but it imposes a numerically challenging situation. Under the boots 

contact situation, the mesh size in fluid domain is infinitesimally small and the time 

step size becomes practically zero.  

In order to prevent the contact situation while maintaining the boots effect, a 

technique based on a virtual contact line is introduced. The basic idea is quite simple in 

a sense that the boots gap is required to maintain a minimal distance to make fluid 

analysis possible. We set a virtual boundary line as shown in Fig. 3.7, across which the 

grain movement is prohibited. In other words, if the grain surface touches the line, it is 

regarded as the contact condition and further movement across the line is prohibited. 

The propellant surface is then pushed back by a sufficiently high-pressure load from 

the boots gap inside. The virtual contact condition is then negated, and the grain is 

allowed to move normally.  
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Figure 3.7 Virtual contact line 
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Figure 3.8 Integration flow chart for FSI rocket simulation 
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Chapter IV 

SIMULATION RESULTS 

4.1 Validation problem 

 

 
 

Figure 4.1 Geometry of panel flutter and non-matching fluid-solid interface 

 

In order to examine the reliability of the present FSI simulation, we firstly perform 

a problem of panel flutter as a validation case. Nelson and Cunningham studied this 

problem with some assumptions to analytically determine the effect of the Mach 

number on the stability boundary of a panel subjected to low and high supersonic air 

flow passing below while its upper surface is exposed to still air [33]. Figure 4.1 shows 

the geometry of the panel flutter used for this simulation. The length of the panel is 1 m 

and its thickness is 0.007 m. The plate is assumed to be elastic with a Young’s modulus 

of 77.28 Gpa, a Poisson’s ratio of 0.33, and a density of 2710 kg/m3. The panel is 

made of flexible material but both ends are clamped like a bridge. In this work, the 

supersonic air flow has a free stream Mach number of 1.2 to 1.7, a uniform initial 
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pressure of 0.1 Mpa, and a density of 1.225 kg/m3. To initiate the dynamic response of 

the plate, the following panel displacement is introduced as a small incipient 

perturbation. 

 

 ( ) max 1 cos 2
2

xx
l

δδ π  = −     
 .             (4.1) 

 

Here, maxδ  is taken to be 3 mm, and l is the length of panel (1 m). The maximum 

displacement is located at the center of the panel, and the initial displacement is 

magnified or subdued through the interaction between supersonic external flow and 

elastic panel structure. Nelson and Cunningham analyze this problem to show the 

theoretical result in Fig. 4.2. The horizontal axis shows the Mach number of external 

supersonic flow, and the vertical axis is the ratio of thickness to panel length. By 

analyzing the 1st and 2nd vibrational mode of the panel, a stable and unstable region 

can be obtained. The bold dotted line in Fig. 4.2, which combines the stability 

boundary of each mode, is the borderline between the stable and unstable region. We 

compare the computed results with the theoretical analysis. The theoretical critical 

Mach number separating the stable and unstable region is approximately 1.432. 

 Figure 4.3 shows the simulation results of the displacement at the panel center 

where the maximum temporal deformation can be observed. The dynamic response at 

the panel center is used to judge whether the initial deformation is going to be stable or 

not. We change the external supersonic flow from the Mach number of 1.2 to 1.7 with 

0.1 steps and assume the flow is inviscid. As shown in Fig. 4.3, from the Mach number 

1.2 to 1.3, the initial displacement of the center point increases and unstable behavior 

appears. The result of the Mach number 1.4 shows a nearly neutral stable condition by 
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almost maintaining the initial displacement. If the Mach number is close to 1.5, the 

initial displacement is completely subdued. This indicates that the critical Mach 

number is located near 1.4, showing a little discrepancy with 1.432 of the theoretical 

result. Nelson and Cunningham obtained the pressure perturbation of the external flow 

by introducing the velocity potential [34]. In other words, the theoretical result is based 

on the assumption of the shock-free inviscid flow with small incidence, so that the 

linearized flow theory is applicable. In computed results, however, the nonlinear effect 

by shock waves is observed, particularly in cases of high incidence and high Mach 

number flows where the linearized theory with small perturbation is somewhat limited. 

The pressure force induced by shock wave pushes the panel in the opposite direction to 

the panel oscillation, so that it brings an effect to attenuate the panel oscillation. This 

seems to be the reason for the small discrepancy observed between the computed result 

and the theoretical analysis. Even though the nonlinear effect is not included in the 

theoretical analysis, the stability behavior predicted by the two results is almost the 

same. 
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Figure 4.2 Theoretical result of stability boundary (Nelson and Cunningham, Ref. 28) 
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Figure 4.3 Numerical results: dynamic response at the panel center 
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4.2 Validation problem 

The panel flutter problem as a validation case was chosen to confirm the FSI ability 

of the integrated code. We agree with the reviewer’s comment in a sense that this 

validation case was not enough to demonstrate that the code is ready to apply to rocket 

burning simulations. At the same time, however, it is very difficult, even for academic 

purpose, to obtain experimental data of solid rocket motor containing structural 

responses. 

In order to demonstrate the fidelity of the integrated code, we carry out another 

validation test using ground firing test data of the following rocket motor. This 

experimental test was carried out by Agency of Defense of Development (ADD), 

Korea, and it has been published by H. Han [41]. Figure 4.4 shows the axisymmetric 

shape of the rocket motor used in the experimental and numerical research. Distinctive 

feature of this rocket is that the forepart of propellant grain has a curved surface and it 

changes the burning area of propellant surface. At the forehead of chamber, there is 

narrow lengthy hole to measure the chamber pressure in the experiment. Therefore, in 

the numerical simulation, the pressure history was measured in this point (see Fig. 4.4). 

The rocket cases, nozzle, and other rocket components ware included to the FSbI 

simulation. Table 4.1 shows the propellant characteristics for burning model based on 

Han’s work [41].  

In the experiment, the ignition was took place by additional explosive material but 

the exact location was not stated and assumed to be at the center of combustion 

chamber. Therefore we started ignition at some points artificially as shown in figure 4.5. 

Figure 4.5 also show the flame propagation process of propellant surface.  

Figure 4.6 shows the intermediate temperature and displacement distributions of 

the FSbI simulation. All grain surfaces produce the mass flow to fluid domain but 

temperature distribution at the center part and backside cavity of the combustion 

chamber is relatively lower, while density distribution is relatively higher. 

Displacement distribution indicates that solid propellant is being pushed to the radial 
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direction but other rocket components do not show a noticeable deformation. This is 

because TPEM motor was designed for ground firing test and thus the rocket case is 

thicker. Figure 4.7 shows a shape just before the full-burning of contained propellant. 

Figure 4.8 compares the pressure history between experimental data and computed 

results. The pressure development history of both results exhibits the same tendency, 

though there is a slight discrepancy. The difference is particularly visible at the early 

stage of simulation. Such discrepancy appears to come from the fluctuation caused by 

unsteady acoustic waves existing near the measuring point at the early stage of 

simulation. Nonetheless, the overall computed pressure history well matches 

experimental data, demonstrating that the developed integrated code is capable of 

predicting the general performance of solid rocket burning. 

 
Figure 4.4. Geometric shape of TPEM solid rocket motor 
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Propellant properties 

a (of APN model) 0.0277 inch/sec 

n (of APN model) 0.44 

Reference pressure 1000 psia 

Propellant density 1.8 g/cc 

Adiabatic flame 

temperature 

3539 K 

Ignition temperature 850 K 

  

 

Table 4.1 Propellant burning properties of TPEM rocket motor 

 

 

 

 
Figure 4.5 Flame propagation process of TPEM rocket motor 
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Figure 4.6 FSbI simulation results of TPEM motor (displacement legend for 

structural contour) 

 

 

 

 

 

 

 
Figure 4.7 Full-burning shape of contained propellant  
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Figure 4.8 Pressure history between experimental data and numerical results 

 

 

 

 

 

 



                                                           Chapter Ⅳ 

75 

 
Figure 4.9 Rocket geometry for simulation 
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4.3 Rocket modeling and thermal analysis 

Figure 4.9 shows a typical 2-D axisymmetric rocket geometry designed for the 

purpose of simulation. The blue color indicates the empty space of combustion 

chamber as an initial fluid domain, which is going to be enlarged as the propellant 

grain start to burn. The red color shows the deformable structure domain (or the solid 

propellant grain), and the green color is the undeformable structural part composed of 

the rocket case, igniter, and the nozzle. At the forehead of combustion chamber, there 

exist a pyrogen-type igniter and a slot geometry. The pyrogen-type igniter is modeled 

to eject an initial hot gas, which makes the grain ignited. At the rear part of the rocket 

motor, there are a boots geometry which is a narrow gap between the propellant grain 

and the rocket case, and a boots entrance part. At the nozzle outlet, there is a thin 

nozzle membrane that blocks the outflow through the nozzle. When the average 

pressure on the membrane reaches a specific value (6 atm), the nozzle membrane is 

broken and the pressurized flow is spouted out through the nozzle outlet. The boundary 

conditions for the flow analysis are listed in Table 4.2. The solid propellant is assumed 

to be elastic or visco-elastic with a Young’s modulus of 63.039 Mpa, a Poisson’ ratio of 

0.499, and a density of 1800 kg/m3 The shear modulus of solid propellant is obtained 

from the following relation. 

 2 (1 ) 3
E EG

v
=

⋅ +


                      (17) 
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The material properties for structural response are shown in Table 4.3 and Fig 4.10 

shows its relaxation curves. The ignition temperature of propellant is 850K in this 

simulation. The hot gas from the igniter heats up the exposed surface by convection. 

Then, the surface temperature of combustible substance rises gradually. When it 

reaches 850K, the propellant surface takes fire spontaneously and continues to burn. 

 

 
 

 Boundary conditions 

Igniter 
inflow Constant mass flow rate 

Inflow velocity = 1016m/sec 
Temp. = 2500K 

Pressure = 7.011E+06 Pa 

Solid 
and 

propellant 
surface 

Wall Inviscid Slip condition 
Viscous No-slip condition 

Propella
nt 

Before ignition  
(Ts < 800 K) Wall condition 

After ignition 
(burning) 

Mass flux from 1-D 
combustion module 

Axis Axisymmetric condition  

Nozzle 
outlet 

Before membrane broken (P < 
6 atm) Wall condition 

After membrane broken Supersonic outlet 
 

Table 4.2 Boundary condition for FSbI analysis 
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Master relaxation curve 

P-material 

Erel(t/aT)/E0 = 0.27585*exp(-x/1.E-6) + 0.39853*exp(-x/1.E-5) 

            + 0.15701*exp(-x/1.E-4) + 0.0862*exp(-x/1.E-3) 

            + 0.02623*exp(-x/1.E-2) + 0.02026*exp(-x/1.E-1) 

            + 0.00916*exp(-x/1.E0) + 0.00555*exp(-x/1.E1) 

            + 0.00213*exp(-x/1.E2) + 0.00322*exp(-x/1.E3) 

            + 0.015863  

E0 = 630.393 bar, Eeq =10 bar, v = 0.499 

Log(t/aT) = -5.854(T(℃) - 20) / (170.47 + ( T - 20)) 

Thermal expansion coefficient a = 0.87E-4 (/℃) 

Stress free temperature T0 = 60℃ for all materials 

Table 4.3 Material properties of solid propellant 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Relaxation curves of solid propellant 
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Before carrying out a full burning solid rocket FSbI simulation, we initially 

performed a thermal analysis of the propellant grain. It is known that the 

manufacturing temperature of the solid propellant grain is about 60 C but the 

safekeeping temperature is about -40 C . As a result, the propellant grain is deformed 

due to the thermal load induced by temperature discrepancy. Such structural 

deformation may provoke a change in the flow characteristics that could cause 

unexpected rocket failures. We firstly simulate this process to examine the effect of the 

thermal load and geometry deformation. The deformed geometry is then adopted as an 

initial shape in the full-burning FSbI simulation. Figure 4.11 shows the simulation 

result that is compared with Abaqus data. We decreased the temperature from 60 to -40 

C  over 1400 minutes, and maintained the temperature for approximately 3000 

minutes. The displacement was then obtained at the center of the grain surface. A slight 

difference is observed between the two results, but its magnitude is quite small (less 

than 1%) compared to the radial length of the propellant grain. 

Figure 4.12 compares a geometrical change in combustion chamber before and 

after the thermal deformation. A noticeable change near the boots geometry can be 

observed. The boots geometry is generally designed to prevent failure due to the 

thermal load, like the gaps in railway line. During the thermal analysis, the propellant 

grain shrinks as the temperature decreases, and as a result, the boots gap grows as in 

Fig. 4.12. Since the boots gap may play a significant role in the dynamic response of 

fluid-structure interaction, it is included in the full-burning FSbI simulation. 
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Figure 4.11 Numerical results: comparison of thermal analyses 

 
Figure 4.12 Numerical results: geometrical change of the boots’ part due to thermal 

deformation 
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4.4 Rocket simulation results 

Figure 4.13 shows the FSbI simulation results with the inviscid flow solver to 

examine the initial flow field development, the ignition process, and the flame 

propagation process along the grain surface in the forehead of combustion chamber. 

The initial flow field develops from the hot gas ejected from the pyrogen-type igniter 

(Fig. 4.13-(a)). The convection of the hot gas heats up the exposed grain surface near 

the trimmed slot surface (Fig. 4.13-(b)), and the area around the trimmed surface is 

firstly ignited to send out mass flux normal to the grain surface (Fig. 4.13-(c)). The 

flame from the ignited surface heats the surrounding region (Figs. 4.13-(d) and (e)), 

and the forehead of the propellant grain is ignited almost simultaneously with the 

trimmed surface (Fig. 4.13-(f)). The flame propagates rapidly along the grain surface 

while the propagation inside the slot is rather delayed. This is because the slot area is 

congested with the initial cold air (Fig. 4.13-(g)). At the end of initial stage, the 

chamber is finally filled with the hot emission gas and the entire grain surface produces 

a mass flux (Fig. 4.13-(h)). 

From the inviscid simulation results in Fig. 4.13, the high temperature gas ejected 

from the igniter plays an important role in developing the initial flow fields and heating 

the exposed grain surface. This indicates that an accurate prediction of the initial flow 

physics is essential in determining the initial burning position and time of the grain 

surface. In general, mass flux sweeps away boundary layer on the grain surface, and 

viscous effect near the grain surface may be neglected. Reasonable results can be 

obtained by inviscid simulations only. At the early stage of ignition process (or ignition 

transient phase), however, complex unsteady flow physics influences the ignition at the 

grain surface, and the ignition delay time. Besides, the existence of the slot, nozzle and 

boots puts additional geometric complexity. The Navier-Stokes computations with the 
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Spalart-Allmaras turbulence model are thus carried out to include the viscous and 

turbulence effects [35-37]. 

Figure 4.14 is the integrated simulation results with the viscous flow solver. 

Though not taken at the same instant, the sub-figures in Fig. 4.14 are listed in 

chronological order as in Fig. 4.13 to compare the distinguishing flow development 

and ignition process with the inviscid results. From the view point of the overall flow 

development and flame propagation process, major flow physics observed in Fig. 4.14 

is quite similar to the inviscid results of Fig. 4.13. The hot gas heats the trimmed 

surface to ignite firstly (Fig. 4.14-(c)), and the flame front spreads out along the grain 

surface (Fig. 4.14-(d)). The flow and flame development pattern that observed in the 

first four sub-figures of Fig. 4.14 corresponds to that of Fig. 4.13. 

A closer look at the two cases, however, shows that the detailed flow pattern is 

somewhat different. In particular, temporal ignition and flame propagation along the 

grain surface are remarkably delayed in the viscous results. Though most of the cold 

gas that initially filled combustion chamber runs out, some of the initial cold gas 

remains inside chamber and causes the flame propagation delay. As shown in A and B 

of Fig. 4.14-(e), the burning gas and geometric shape of chamber blocks the passage of 

the initial cold gas. In other words, there is no passage as in region A or only a very 

narrow passage exists as in region B. Thus the initial cold gas in these regions is 

compressed and has a higher density. In fact, this is commonly observed in both 

viscous and inviscid results. However, the propagation delay induced by the 

compressed cold gas predominates in the viscous results, which seems to be caused by 

wall boundary condition. In the inviscid simulation, high temperature gas from the 

ignited surface can be readily transported into the neighboring un-ignited region by a 

tangential slip flow along the grain surface, while no slip boundary condition in the 

viscous simulation excludes the tangential velocity component. 
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Figure 4.13 Numerical results: ignition, flame propagation, and flow development 

process in combustion chamber (inviscid flow solver) 
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Figure 4.14 Numerical results: FSbI simulation with viscous flow solver 
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Fig 4.15 compares the jet plume from ignitier at the same time (0.05 ms). The size 

and position of two results has almost same at a glance. However, detailed features has 

distinctive difference. Two results piled up in the Fig. 4. 16, from this figure we can see 

that the inviscid plume is little thicker and lengthy. This differnce causes from the 

outlet of igniter. At the wall of igniter outlet, N-S analysis decreases the mass flow rate 

because the boundary is no-slip condition. This decrease the effective area of igniter’s 

outlet then the mass flow decreases in the N-S simulation. Fig 4.17 shows this 

phenomena clearly. And this phenomena should be a reason which provoke the 

difference of initial ignition time of Euler and N-S analysis. However, this is not 

sufficient explanation of initial burning time difference. Therefore, I think more effort 

should be need to compare the quantity of wall heat transfer.         

 

 

Figure 4.15 Numerical results: comparison of Euler and N-S result at the 0.05ms 
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Figure 4.16 Numerical results: jet plume size comparisons 

 

 

 
Figure 4.17 Numerical results: igniter outlet comparison                          

at the same time of Euler and N-S result 
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Temperature Density 

(a) Viscous results at 2.2 ms  
 

  
A region B region 

(b) Viscous results 
 

  
A region B region 

(c) Inviscid results 
 

 

Figure 4.18 Numerical results: flame propagation delay around the corners 
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Figure 4.18 highlights the flame propagation delay around corner. Figure 4.18-(a) is 

the temperature and density contour of viscous simulation results at 2.2 ms. The delay 

pattern is particularly observable at the corners A and B with some durability (see Figs. 

4.14-(e) ~ (h)). In the inviscid simulation results of Fig. 4.13, the delay pattern at the 

corners is not observed. Figures 14-(b) and (c) are enlarged views at A and B to 

compare flow physics obtained by inviscid and viscous simulations. In Figures 14-(b), 

one side of corner is ignited first and produces high temperature burning gas. The hot 

gas on the ignited side cannot penetrate into the other side of corner because high 

density cold gas layers exist on the un-ignited side. In other words, the burning gas 

from the ignited surface does not have a sufficient velocity and pressure to pass 

through the cold gas area. In Figure 14-(c), a noteworthy difference is that there is 

relatively large velocity component around A and B with the tangential direction to the 

grain surface, pointing toward un-ignited surface. This tangential velocity component 

helps the high temperature gas enter into the high density cold gas layer easily, and the 

flame propagation delay is hardly observed in inviscid simulation. Thus, the flame 

propagation delay around corner comes from the numerical treatment of wall boundary. 

This suggests that viscous computation is essential to understand the flow physics at 

the ignition transient phase, because the characteristics of flame spreading along the 

grain surface are directly related to the internal pressure development at the early phase 

of rocket operation. At the same time, the other cause of the flame propagation delay is 

observed which is provided by the physical characteristic of viscous flow. 

Figure 4.19 shows the flow field near the boots’ entrance. Near the inclined 

propellant surface, the behavior of the flame propagation delay is observed again. The 

flame front propagated from the forehead of the grain reaches the corner of the boots’ 

entrance. The geometric shape of the boots’ entrance is like a divergent channel and 

thus the high temperature gas flow is separated near the corner and a separation bubble 
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is formed. The separation bubble mostly contains relatively lower temperature fluids, 

and flame propagation is delayed on the inclined surface as shown in Figs. 4.19-(a) and 

(b).  

 

  
(a) (b) 

  
(c) (d) 

 

Secondary ignition          
pointd

 
Figure 4.19 Numerical results: flow separation near boots’ entrance                   

and secondary burning on inclined grain surface 

 

At the same time, however, the separation bubble also triggers so called the 

secondary burning [36] to relieve the flame propagation delay. As in Fig. 4.19-(c), the 

separation bubble induces an isolated-ignited spot on the inclined surface by inhaling 
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high temperature flow from its surroundings. By continuously supplying the hot gas 

into the inclined grain surface, a point near the middle of the separation bubble is 

ignited even though the separation bubble mostly contains low temperature fluids. The 

secondary burning spot grows the burning surface and eventually detaches the 

separation bubble as in Fig. 4.19-(d). In fact, this secondary burning can also be seen in 

the slot region. As in Figs. 4.14-(g) and (h), an isolated-ignited spot is observed on the 

un-ignited face of the congested cold gas layer, but there is some difference between 

the two cases. The former case (Fig. 4.14) is provoked by a moving rotational flow, 

while the latter (Fig. 4.18) is due to the heat provided by the stationary rotational flow 

(separation bubble). Both of the secondary burnings have the common effect of 

relieving the flame propagation delay. 

 

 

 

 
 

Figure 4.20 Numerical results: flame propagation near the boots’ entrance using 

inviscid flow solver 
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Figure 4.20 shows the inviscid simulation results near the boots’ entrance. In this 

figure, compared to the viscous results, a totally different physical feature is observed. 

Basically, inviscid simulation does not capture the flow separation induced by 

boundary layer. When flame front reaches the corner (Fig. 4.20-(a)), the tangential 

velocity component makes the high temperature gas smoothly pass the corner without 

inducing separation bubble (Fig. 4.20-(b)), and thus the flame propagation delay is not 

observed. As a result, inviscid simulation cannot provide the flame propagation delay 

and accompanying secondary burning. Compared to the full duration time of rocket 

motor operation, the flame propagation delay takes place only within a few 

milliseconds. However, the flame propagation delay may affect the pressure build-up 

mechanism of the propellant grain and bring a significant change in the ignition 

transient phase. Furthermore, the flame propagation delay also increases the pressure 

imbalance on the grain surface which may lead to a fatal structural failure, such as 

crack propagation. Considering the fact that ignition transient is critical in rocket motor 

operation and rocket failures may take place in this period, an accurate prediction of 

flame front spreading along the grain surface is important and the flame propagation 

delay is closely connected to this problem [3, 38, 39]. In this regard, the flow 

characteristics provided by inviscid and viscous simulations should be selectively 

adopted, particularly at the ignition transient phase. 

Figure 4.21 shows the density development history at three points inside the 

combustion chamber. Point A locates on axis, B is on the grain surface in the slot 

geometry, and C is at the forehead end. As shown in top of Fig. 4.21, B and C point 

locate in the above- mentioned congested cold gas area. In bottom of Fig. 4.21, point B 

and C shows a density fluctuation with high peak because of the congested initial cold 

gas during an ignition phase. However, soon thereafter, these density fluctuations 

disappear and show stable increase tendency, because the flame spreads all surface of 
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these area. However, Fig 4.22, which is the pressure variation of same place, same time, 

does not show the distinctive feature of those phenomena (congestion of initial cold 

gas). Thus, from the perspective of that experimental measurement of density is 

relatively limited than numerical method, therefore, numerical approach should give 

more practical information to a researcher for interpreting the physics of combustion 

chamber.     

Figure 4.21 Numerical results: locations of measurement  

& density history in the chamber 
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Figure 4.22 Numerical results: FSbI simulation with viscous flow solver 

 

Figure 4.23 shows the pressure development history of three simulation cases at the 

center of axis during the ignition phase. First case is the FbI (fluid-combustion 

coupling without solid analysis) simulation, and there is no deformation and volumetric 

change of the propellant grain. The highest pressure level is maintained until it reaches 

a steady state. Second case is the FSbI simulation with the inviscid flow solver. Overall 

pressure level is somewhat lower than the FbI case, and the steady state pressure is 

approximately 5 % lower than the FbI value. This is because the propellant surface 

absorbs some portion of pressure energy by deformation, and burning of the propellant 
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grain enlarges the physical domain for fluid analysis. Last case is the FSbI simulation 

with the viscous flow solver. The simulation result exhibits a similar behavior to the 

second case except that the pressure build-up is rather delayed during the ignition 

phase. Accordingly, the time to reach the steady state (or the ignition transient phase) is 

rather elongated.  This is due to the flame propagation delay as mentioned before. 

 

 
Figure 4.23 Numerical results: pressure development history during the ignition phase 

 

Another cause of the propagation delay can be examined from the view point of the 

limited numerical modeling. The 1-D based combustion model employed in this 

research does not take into account the heat conduction along the grain surface. In the 
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inviscid simulation, the hot gas from the ignited surface can be transported into the 

neighboring un-ignited face. The 1-D combustion model with no slip boundary 

condition has no way to reflect the heat transfer along the grain surface. This may 

accentuate a delay of the flame propagation in the viscous simulation. From this 

perspective, the development of an improved combustion model accounting for the 

heating effect along the grain surface direction by including the effects of erosive 

burning and radiation is essential for an accurate integrated simulation. Since 

experimental data concerning the combustion characteristics of the solid propellant 

grain is necessary to adjust the propagation speed, this is going to be dealt with as a 

future research topic. 

Figure 4.24 shows the temperature, Mach number and pressure contour of the 

chamber forehead just prior to the ignition of the propellant surface. The Mach number 

contour shows that the flow ejected from the igniter is rapidly expanded to generate a 

supersonic region. The supersonic flow and the geometric constraint of the chamber 

produce a shock wave, as can be seen in Fig. 24-(a). The temperature field after the 

shock wave rapidly increases, especially near the trimmed surface, and thus the vicinity 

of the trimmed surface ignites first. Furthermore, the shock wave and the associated 

temperature rise accelerate the ignition process by increasing the heat flux transferring 

to the propellant surface. This indicates that the rapid increase of heat flux caused by 

shock wave is a major factor in determining the initial burning location when a 

pyrogen-type igniter is used as a starter. In the solid propellant rocket motor, the initial 

burning location and time is important to predict its performance and reliability. This is 

because the ignition delay time is strongly connected with the initial burning 

characteristics, and many of the unexpected rocket failures take place at the initial 

ignition phase. Moreover, at the initial ignition phase, the initial burning location 

induces the pressure imbalance on the grain surface that could trigger a fatal structural 



                                                           Chapter Ⅳ 

96 

deformation [1, 38, 39]. By analyzing the flow physics at the initial ignition phase, 

better understanding can be obtained on the ignition mechanism of the propellant 

surface with a pyrogen-type igniter, and the performance and stability of solid rocket 

motors can be greatly improved. 

  

Mach number Temperature Pressure 

   
(a) Initial shock shape 

   
(b) Deformed shock shape 

Figure 4.24 Numerical results: Mach number, temperature, and pressure contour at the 
chamber forehead 

 

Afterwards, the pressure rise in the chamber due to the combustion gas weakens the 

expansion fan and significantly changes the initial shock shape (the left-hand-side of 

Figs. 4.24-(a) and (b)). From the center figure of Figs. 4.24-(a), (b), the shock wave 

and the trimmed grain surface confine the hot gas which is gradually developed into a 

rotational flow. The rotational hot gas continuously provides heat energy to the 

propellant surface to induce the flame propagation along the exposed grain surface. 
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During the flame propagation process, the role of the pyrogen-type igniter tends to 

gradually diminish. In other words, shortly after the initial combustion gas induces the 

pressure rise at the chamber forehead, the jet-plume size of the igniter is substantially 

down-sized, and the strong expansion fan and shock wave change into a typical shock 

diamonds (Mach disk) as shown in Fig. 4.24-(h). The effect of the igniter in terms of 

heating the propellant surface becomes negligible, while the rotational hot gas plays an 

important role. 

Figure 4.25 shows the history of the structural displacement of the propellant grain. 

After ignition, pressure in combustion chamber rapidly increases, and it acts as a 

mechanical load on the grain surface. The propellant is then temporally deformed by 

the interaction between pressure load and grain elasticity. In other words, chamber 

pressure and grain elasticity induce mechanical vibration. The displacement history 

shown in Fig 4.25 depicts such physical behavior at two locations. Point A is located 

near the grain surface, and thus directly affected by the unsteady pressure fluctuation 

and burning of propellant. Point B, on the other hand, is near the rocket case, so it is 

less sensitive to the perturbation of external force. The elastic result is obtained from 

the Hyper-elastic model [17], and the visco-elastic result from the generalized Maxwell 

model [19]. The two results are qualitatively the same, but the quantitative difference 

confirms the dissipative nature of the visco-elastic material (or the solid propellant 

grain). The material viscosity absorbs some amount of pressure energy to subdue the 

dynamic response of grain. 
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Figure 4.25 Numerical results: history of structural displacement 
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Figure 4.26 Numerical results: the boots’ contact problem 

 

 
Figure 4.27 Virtual contact line 
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Besides the surface ignition process, another physically important phenomenon 

caused by the fluid-structure coupling is the boots’ behavior in the transient burning 

phase. As shown in Fig. 4.26, most solid rocket motors have a narrow crevice called 

the boots gap between the propellant grain and the rocket case (or the region from point 

A to point B in Fig. 4.27). The role of the boots gap is known to prevent an unexpected 

structural failure due to severe thermal deformation. Thus, the unsteady behavior of the 

boots gap must be included in the FSbI simulation. The hot gas created by the 

propellant burning rapidly propagates to the rocket nozzle area. The gas flow passing 

the boots entrance produces a series of expansion fan and shock wave due to geometric 

constraint (see the left picture of Fig. 4.26). In particular, the shock impingement and 

reflection act as a strong pressure load on the grain surface, and the propellant grain is 

pushed toward the vertical direction. As a result, the boots gap becomes progressively 

narrower to lead a structural contact problem. The boots contact problem is physically 

quite reasonable, but it imposes a numerically challenging situation. Under the boots 

contact situation, the mesh size in fluid domain is infinitesimally small and the time 

step size becomes practically zero. The right-hand-side of Fig. 4.26 shows the result 

obtained by the visco-elastic material model, indicating that the structural deformation 

is concentrated on the boots head to create a contact problem. 

In order to prevent the contact situation while maintaining the boots effect, a 

technique based on a virtual contact line is introduced. The basic idea is quite simple in 

a sense that the boots gap is required to maintain a minimal distance to make fluid 

analysis possible. We set a virtual boundary line as shown in Fig. 4.27, across which 

the grain movement is prohibited. In other words, if the grain surface touches the line, 

it is regarded as the contact condition and further movement across the line is 

prohibited. The propellant surface is then pushed back by a sufficiently high-pressure 

load from the boots gap inside. The virtual contact condition is then negated, and the 
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grain is allowed to move normally. Figure 28 compares the displacement contour of the 

propellant grain without/with imposing the virtual contact situation. The highly 

concentrated unphysical deformation caused by the boots contact is clearly relieved 

and improved by introducing the virtual contact line. This indicates that the transient 

burning process for the propellant grain with the boots can be successively simulated 

by suitably imposing a virtual contact distance. According to the simulation results 

with the virtual contact line method, the propellant grain near the boots is pushed to the 

upward direction and touches the virtual contact line, and the grain movement is 

restricted by the virtual contact condition. Quickly afterwards, the contact condition is 

released by the pressure load from the boots gap inside, and the grain moves back to 

the downward direction. The pressure in the boots gap drops due to the volumetric 

change, and the grain moves again toward the upper direction. This mechanical 

vibration of the grain is sustained for a short time until the chamber pressure 

approaches a quasi-steady state. 

Figure 4.29 shows the pressure history at the center of combustion chamber during 

the full-burning simulation. The chamber pressure increases instantly and reaches the 

maximum point, while the nozzle membrane, that is designed to contain the hot gas 

until the chamber pressure reaches a specific value, is finally broken, and the contained 

flow is spouted out through the nozzle. As a result, the pressure rise in the combustion 

chamber slows down and approaches a steady state by balancing the incoming mass 

flow from the burned grain and the outgoing mass flow through the nozzle. Afterwards, 

the internal gas pressure is maintained without any noticeable changes. During this 

period, the burning surface grows according to the burnback progress, and the 

volumetric expansion of fluid domain is accompanied. Each of the two is the main 

cause of rising and falling the chamber pressure. If the chamber pressure rises, the 

burning rate grows and the volumetric expansion rate of fluid domain increases, which 
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should act as a counterbalance to decrease the chamber pressure. Finally, the small 

segment of the propellant grain is fully burned away, and the mass flux decreases 

accordingly. This phase is called a steady state. In the steady state, the burnback 

velocity of the propellant grain is nearly constant since the burning rate is decided by 

the fluid pressure via the pyrolysis law. As shown in Fig. 4.30, most of the combustion 

chamber has nearly constant temperature and pressure, and local change can be 

observed near the rocket forehead, the boots gap and the nozzle. 

 

 
Figure 4.28 Numerical results: structural deformation contour of propellant grain 

without/with virtual contact line method 
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Figure 4.29 Numerical results: pressure history in the chamber                 

during the FSbI simulation 

 
Figure 4.30 Numerical results: steady-state flow variable contours                

in the combustion chamber 
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During the combustion process, the propellant grain is burned away and deformed 

due to the burning mechanism and the structural load from the high-pressure gas in the 

combustion chamber. Figure 4.31 shows the progressive geometric change of the solid 

propellant grain during the full-burning rocket simulation. It is seen that the burning 

characteristic around convex and concave corner is different. The convex corner 

maintains its initial shape but concave corner becomes gradually round. Particularly, 

the shape change near the trimmed surface is noticeable, which is consistent with the 

previous research [32]. Figure 4.31 also compares the change of fluid domain at several 

burning stages. The initial solid propellant grain is topologically separated into two 

sub-grains. At the final burning stage, one of them is fully burned away and the other 

remains a little. From Fig. 4.31, the highly unsteady nature of the initial burning is 

clearly contrasted with the stable characteristic of the quasi steady state burning. 
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Figure 4.31 Numerical results: geometric changes process of propellant grain          

and fluidic domain 
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Chapter V 

CONCLUDING REMARKS & FUTURE WORKS 
 

5.1 Concluding Remarks 

An integrated fluid-structure-combustion simulation to understand the multi-scale, 

multi-physics phenomena of solid rocket motor interior has been presented. To capture 

the progressive burning boundary of a propellant grain, the ALE kinematical 

description has been implemented into the fluid/solid formulation. Two-dimensional 

axisymmetric compressible flow is assumed for the combustion chamber flow, and the 

mechanical response of grain is obtained using the non-linear elastic/visco-elastic 

constitutive model. A 1-D transient burning model is adopted to efficiently simulate the 

burning process of an interface between fluid domain and grain surface. To account for 

the deformation and burning process of the propellant grain, an efficient mesh 

repair/regeneration algorithm and a regression model are implemented. Using the 

integrated program, the fluid-structure-combustion coupling is simulated during the 

burning process in the solid rocket combustion chamber. From the simulation results, 

we could observe the detailed flow physics of the initial burning and the flame 

propagation characteristics of the exposed grain surface, and investigate the ignition 

mechanism due to shock wave and expansion fan. Furthermore, we could understand 

the behavior of the structural deformation of the propellant grain. By examining 

inviscid and viscous flow simulation results, we also understand the flame propagation 

delay and the secondary burning effect by rotational flows. In addition, the virtual 

contact line is successfully introduced to prevent the boots’ contact problem without 

compromising its effect. 
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Finally, I have conducted an integrated full-burning simulation of a solid rocket 

motor using the developed analysis program. While existing experimental tests can 

provide some limited data, various information regarding flow variables in the 

combustion chamber as well as solid variables of the propellant grain could be obtained.  

 

5.2 Future work  

   To more accurate and robust 2-D integrated simulation, firstly, the in-depth 

investigation to the differences of ignition time between Euler and N-S simulation 

should be conducted. And the virtual contact method should be needed to be refined for 

realistic simulation. In this stage, there are lots of geometric limitations to apply 

contact line. However, if fluid solver could simulate in the zero cell area situation, the 

fields of application could be enlarged.   

At the same time, there are several items to be improved for more accurate and 

reliable simulations and three-dimensional extension. These include adapting the 

advanced burning model which could consider erosive burning effect of propellant 

grain. Moreover, a heterogeneous characteristic should be included to the burning 

model to achieve more realistic simulation of combustion chamber, because most solid 

propellants used today are composite propellants (which have heterogeneous 

properties) and non-uniform temperature distribution of and alumina particle behavior 

of composite propellant did important role for solid rocket performance. And I should 

have a more effort for an elaboration of structural modeling to capture compressible 

effect caused by deformation of thin rocket case because it could differs the 

displacement tendency of solid propellant deformation significantly and not be ignored 

to more accurate prediction of real rocket performance. 

 



Chapter V 

108 

Appendix 
 

 

 A1. Common refinement data transfer scheme for 3-D rocket 

Among the data transfer methods, the common-refinement method (C-R method) 

has distinctive two characteristics as follows: constructing a common surface and 

numerical integration with minimizing a certain error norm. The common surface is 

constructed between non-matching meshes by referring geometry features of two 

computational meshes simultaneously. On the common surface, data interpolation is 

performed using minimizing certain error norm. Therefore, the C-R method is known 

to yield conservative and accurate data transfer for non-matching interface cases.  

Figure A.1 shows the general procedure of C-R method which developed to use 

data transfer tools for 2D/3D shape of combustion chambers inside solid propellant 

rockets. The C-R procedure is consisted with two main categories; making common 

surfaces and data interpolation. 
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A1.1 Mesh points projection 

To construct a common surface, the source and target mesh nodes need to be 

projected to opposite mesh surfaces. Nodes project direction can be defined by 

averaging normal vectors of element surfaces which include a projecting node. Exact 

location of nodes projection has to be set as intersection points between mesh surfaces 

and project direction vectors.  

The Common surface is consisted of common nodes which are made from linear 

interpolation process of projected nodes. 

 

Figure A.1 General procedure of common-refinement method 
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 { }( ) , ( 1)S T x S T s s Sα β α β α β+ ≡ = + ∈ + =            (A.1) 

 

For (Eqn. A.1), α and β are positive constants and have condition of 1α β+ = . 

Fig. A.2 shows that subfacets on a common surface could have various polygon 

shapes for the case of structured quadrilateral (structure part) and unstructured 

triangular (fluid part) meshes combination. 

 

Figure A.2 Subfacets on a common surface 
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A1.2 Subfacets construction 
Subfacets on a common surface are organized by linking common nodes with 

geometry information of source and target meshes. Common nodes which projected 

from each meshes to the common surface construct quadrilateral and triangular meshes. 

After determining background elements overlapped to a standard element, 

intersection points of the background elements and the standard element segments are 

added as common nodes. 

This process must be performed for all source mesh elements to construct common 

surface subfacets. Fig. A.3 shows the constructing subfacets process especially for the 

case of one triangular standard element has four quadrilateral background elements. 

Finding intersection points starts in a standard element node (a blue circle in Figure) 

and proceeds with direction of an arrow in Fig. A.3. 

 

Figure A.3 Constructing subfacets process 
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A1.3 Subfacets triangulation 
In case of non-matching interfaces between quadrilateral and triangular meshes, 

subfacets may have various polygon shapes. Therefore, it is difficult to generalize of 

shape function which is used in data interpolation process with numerical integration. 

Triangulation of subfacets can be an efficient solution for data interpolation. By 

triangulation process, we obtained only one kind of shape function (triangular shape 

function). As a result of this process, data transfer process could be performed more 

effectively. 

 
A1.4 Data interpolation methods 

 

A1.4.1 L2 minimization 

L2 minimization method minimize L2 norm of transferred data differences. 
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Figure A.4 Subfacet triangulation process 
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In formula (A.2), ψ represents shape functions of target mesh nodes, g  and  f  

are quantities of transferred data and source data. We defined  i jM dxψψ= ∫ , 

ib fdxψ
Ω

= ∫ , ix g=  so that (Eqn. A.2) could be expressed as a matrix equation 

Mx b= . 

 
 
 
 
 
 

 

Figure A.5 Example of making common-refinement surface 
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A1.4.2 Sobolev minimization 
Gibb’s phenomena occur when transferring discontinuous data with L2 

minimization. This problem causes inaccuracy of data transfer, especially in solid 

propellant rocket combustion chambers where internal flow generated strong shock 

waves frequently. To decrease numerical vibration, we examined data interpolations by 

minimizing first order sobolev norms. 
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A1.5 Validation of common refinement  

Developed data transferred module is validated with Jiao and Heath’s results as 

shown in figure A.6~7. Fig. A.7 indicates the comparison of relative errors after 29 

repeated data transfer computation and Fig. A.7 is a contour of the peaks function after 

25 iterations. Based on these results, we confirmed that C-R method adaptation had 

been performed with proper validity and reliability. 
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Figure A.7 Comparison of relative errors (left), Contour of peak function after 
repetitive data transfer (right, solid : exact solution , dashed : numerical result) 

 

Figure A.6 Mesh condition for validation case 

(left) source mesh, (right) target mesh 
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A1.5 Discontinuous function transfer between flat surfaces 
We tested discontinuous data transfer between two flat surfaces. From this test, we 

could confirm that the conservative error of C-R method had been maintained while 

other methods derived non-conservative result (Fig.A.8). For the reason of 

conservation of C-R method is that interpolation process uses data integration on a 

common surface. The conservative feature of C-R method is effective especially in 

repeat data transfer computations. However, from Fig.A.9, C-R method had inaccurate 

result in relative error compared with other methods. 

 

Consistent 

interpolation 

Thin plate splines Multiquadric-

biharmonic 

Common- 

refinement 

1 9.74 10.68 16.34 

Table A.1 comparison of relative time cost 

 

 
Figure A.8 Data transfer results 
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A1.2.2 Discontinuous function transfer in a solid propellant rocket  

 

 

 

 

 

 

 

 

 

 

 

 

 
As a goal of this study, we adapted a three dimensional solid propellant rocket 

Figure A.9 Comparison of relative errors (left),                         

Comparison of conservation errors (right) 

Figure A.10 Non-matching geometry of solid propellant rocket interior 
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combustion chamber shape and examined discontinuous data transfer computations. 

The test shape is composited with flat and curved surface complicatedly. Furthermore, 

there are sharp edges which changes shape drastically so that robust construction of a 

common surface was essential. Structured quadrilateral mesh (327×17 nodes) and 

unstructured triangular mesh (392×20 nodes) are used as test meshes (Fig.A.10).  

In conclusion, we could determine that C-R method was an outstanding method for 

repeated data transfer computations in complicated three dimensional shapes based on 

test results. Fig.A.11 indicates relative and conservative error after 29 iterations. C-R 

method outperformed other methods in a respect of both accuracy and conservation. 

TPS and MQ method generated numerical vibration from the beginning of iterations so 

that it could not satisfied accuracy and conservation. Comparing to consistent 

interpolation method, the C-R method produced more accurate and conservative results 

by accumulating relative error less. Fig.A.13 shows a comparison of L2 & Sobolev 

minimization test result in a transformed coordinate. The result of this test, we could 

confirm that Sobolev minimization suppressed numerical vibration efficiently. 
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Figure A.11 Comparison of L2 & Sobolev minimization test               

(a)L2 minimization  (b) Sobolev minimization 

 
Figure A.12 Data transfer result 
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Figure A.13 Comparison of relative errors (left),                         

Comparison of conservation errors (right) 
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국문 초록 

 
고체 추진제 방식의 로켓은 장기간 보관이 가능하고 즉각적인 사용이 가능

하며 액체 로켓에 비해 상대적으로  신뢰성이 우수하여 군사 및 우주 추진

체의 보조 로켓으로 주로 사용되고 있다. 하지만 능동적인 추력 제어가 어

렵다는 단점을 갖고 있는 고체 로켓의 특성 상 추진제 자체의 연소 특성 및 

연소실 내의 물리 현상을 파악하는 것은 고체 추진 로켓의 개발 및 운영에 

있어서 매우 중요한 문제이다. 고체 로켓 연소실은 추진제 연소에 의한 고

온, 고압의 연소 가스 발생과 유동 압력에 의한 추진제 그레인의 구조 변형 

등 예측하기 어려운 매우 복잡한 물리 현상을 갖는다. 그리고 각 물리적 현

상들은 서로에게 영향을 끼치기 때문에 유체나 구조만의 단일해석으로는 실

제 현상을 예측하는데 있어 많은 제약이 따른다. 그리고 지상 연소 실험을 

통한 현상 파악은 비용이 많이 들고 폭발의 위험이 있으며 연구자가 필요로 

하는 물리량을 특정하여 정보를 획득함에 있어 많은 제약이 있다. 본 연구

는 앞서 언급된 연구 방법의 단점을 보완하기 위한 방법의 일환으로 고체 

추진 로켓 내부 연소실 내부 해석을 위한 유체-구조-연소 연동 해석을 목

적으로 한다.  

본 연구의 적용 대상인 고체 로켓 내부 연소실은 고체 추진제의 연소 및 

유동압력에 의한 구조 변형으로 인해 의해 유동 영역과 구조 영역이 지속적

으로 변화하게 된다. 그러므로 전산 해석에 있어서 영역 변화에 대응할 수 

있는 기법이 필요하다. 본 연구에서는 ALE 기법을 적용하여 유동 해석 및 

구조 해석에 있어서 해석 영역의 체적 변화를 모사하도록 하였다. 그리고 

유동-구조 연동 해석에 있어서 각 영역의 경계 면에서의 정보 전달 기법 

및 영역 변화에 따른 자동 격자 재생성 기법에 관한 연구가 수행되었으며 

추진제 연소 특성에 알맞은 연소 모델 및 연소 과정 중 그레인의 형상 변화
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를 잘 모사할 수 있는 표면 격자 추적 기법을 개발 및 적용하였다. 각 기법

들은 통합 해석을 위해 하나의 프로그램으로 연동되었으며 이를 이용하여 

연소실 내부 현상 해석을 수행하여 연소실 내부의 복합 물리 현상 발달 과

정을 파악하였고 이 결과를 기반으로 파이로젠형 점화기의 초기 점화 위치 

결정 특성, 화염면 전파 지연 현상 및 2차 연소면 생성 등의 물리 현상을 

설명한다.  

…………………………………………………………………………………………… 

주요어 : Solid propellant rocket, Fluid-structure interaction,                     

Arbitrary Lagrangian-Eulerian method, Common-

refinement  data transfer,  

학  번 : 2007-30203 
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