1 research outputs found

    2์ฐจ์› ๊ท ์ผ ์ปค๋ฒ„๋ฆฌ์ง€ ๊ฒฝ๋กœ ๊ณ„ํš์„ ์œ„ํ•œ ํšจ์œจ์  ์•Œ๊ณ ๋ฆฌ์ฆ˜

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„๊ณตํ•™๋ถ€, 2020. 8. ๋ฐ•์ข…์šฐ.Coverage path planning (CPP) is widely used in numerous robotic applications. With progressively complex and extensive applications of CPP, automating the planning process has become increasingly important. This thesis proposes an efficient CPP algorithm based on a random sampling scheme for spray painting applications. We have improved on the conventional CPP algorithm by alternately iterating the path generation and node sampling steps. This method can reduce the computational time by reducing the number of sampled nodes. We also suggest a new distance metric called upstream distance to generate reasonable path following given vector field. This induces the path to be aligned with a desired direction. Additionally, one of the machine learning techniques, support vector regression (SVR) is utilized to identify the paint distribution model. This method accurately predict the paint distribution model as a function of the painting parameters. We demonstrate our algorithm on several types of analytic surfaces and compare the results with those of conventional methods. Experiments are conducted to assess the performance of our approach compared to the traditional method.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” 2์ฐจ์› ํ‘œ๋ฉด์˜ ๊ท ์ผ ์ปค๋ฒ„๋ฆฌ์ง€ ๊ฒฝ๋กœ ๊ณ„ํš์„ ์„ค๋ช…ํ•˜๊ณ  ์ด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ํ‘ธ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์‹œํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ๊ฒฝ๋กœ ๊ณ„ํš ๋ฌธ์ œ๋ฅผ ๋‘ ๊ฐœ์˜ ํ•˜์œ„ ๋ฌธ์ œ๋กœ ๋ถ„๋ฆฌํ•˜์—ฌ ๊ฐ๊ฐ ํ‘ธ๋Š” ๊ธฐ์กด์˜ ๋ฐฉ์‹์„ ๋ณด์™„ํ•˜์—ฌ ๋‘ ๊ฐœ์˜ ํ•˜์œ„๋ฌธ์ œ๋ฅผ ํ•œ ๋ฒˆ์— ํ’€๋ฉด์„œ ๊ณ„์‚ฐ์‹œ๊ฐ„์„ ์ค„์ด๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ฒฝ์šฐ์— ๋”ฐ๋ผ ์ฃผ์–ด์ง„ ๋ฒกํ„ฐ ํ•„๋“œ์™€ ๋‚˜๋ž€ํ•œ ๋ฐฉํ–ฅ์œผ๋กœ ๊ฒฝ๋กœ๊ฐ€ ์ƒ์„ฑ๋  ํ•„์š”๊ฐ€ ์žˆ๋Š”๋ฐ ์ด๋ฅผ ์œ„ํ•ด ๊ฑฐ์Šค๋ฆ„ ๊ฑฐ๋ฆฌ(upstream distance)์˜ ๊ฐœ๋…์„ ์ œ์‹œํ•˜์˜€์œผ๋ฉฐ ์—ฌํ–‰ ์™ธํŒ์› ๋ฌธ์ œ(Traveling Salesman Problem)๋ฅผ ํ’€ ๋•Œ ์ด๋ฅผ ์ ์šฉํ•˜์˜€๋‹ค. ์šฐ๋ฆฌ๋Š” ์ฐจ๋Ÿ‰ ๋„์žฅ ์‘์šฉ๋ถ„์•ผ์— ๊ท ์ผ ์ปค๋ฒ„๋ฆฌ์ง€ ๊ฒฝ๋กœ ๊ณ„ํš๋ฒ•์„ ์ ์šฉํ•˜์˜€์œผ๋ฉฐ ๋„์žฅ ์‹œ์Šคํ…œ์„ ๊ณ ๋ คํ•˜์—ฌ ๊ท ์ผํ•œ ํŽ˜์ธํŠธ ๋‘๊ป˜๋ฅผ ๋ณด์žฅํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๊ฐ™์ด ์ œ์‹œํ•˜์˜€๋‹ค. ๋„ค ๊ฐ€์ง€ ํƒ€์ž…์˜ 2์ฐจ์› ๊ณก๋ฉด์— ๋Œ€ํ•ด ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ง„ํ–‰ํ•˜์˜€์œผ๋ฉฐ ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•์— ๋น„ํ•ด ๋” ์ ์€ ๊ณ„์‚ฐ์‹œ๊ฐ„์„ ์š”๊ตฌํ•˜๋ฉด์„œ๋„ ํ•ฉ๋ฆฌ์ ์ธ ์ˆ˜์ค€์˜ ํŽ˜์ธํŠธ ๊ท ์ผ๋„๋ฅผ ๋‹ฌ์„ฑํ•จ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค.1 Introduction 1 1.1 Related Work 3 1.2 Contribution of Our Work 7 1.3 Organization of This Thesis 8 2 Preliminary Background 9 2.1 Elementary Differential Geometry of Surfaces in R3 10 2.1.1 Representation of Surfaces 10 2.1.2 Normal Curvature 10 2.1.3 Shape Operator 12 2.2 Traveling Salesman Problem 15 2.2.1 Definition 15 2.2.2 Variations of the TSP 17 2.2.3 Approximation Algorithm for TSP 19 2.3 Path Planning on Vector Fields 20 2.3.1 Randomized Path Planning 20 2.3.2 Upstream Criterion 20 2.4 Support Vector Regression 21 2.4.1 Single-Output SVR 21 2.4.2 Dual Problem of SVR 23 2.4.3 Kernel for Nonlinear System 25 2.4.4 Multi-Output SVR 26 3 Methods 29 3.1 Efficient Coverage Path Planning on Vector Fields 29 3.1.1 Efficient Node Sampling 31 3.1.2 Divide and Conquer Strategy 32 3.1.3 Upstream Distance 34 3.2 Uniform Coverage Path Planning in Spray Painting Applications 35 3.2.1 Minimum Curvature Direction 35 3.2.2 Learning Paint Deposition Model 36 4 Results 38 4.1 Experimental Setup 38 4.2 Simulation Result 41 4.3 Discussion 41 5 Conclusion 45 Bibliography 47 ๊ตญ๋ฌธ์ดˆ๋ก 52Maste
    corecore