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ABSTRACT

An Efficient Algorithm for Uniform Coverage Path

Planning on Surfaces

by

Hyunwoong Choi

Department of Mechanical Engineering

Seoul National University

Coverage path planning (CPP) is widely used in numerous robotic applications.

With progressively complex and extensive applications of CPP, automating the

planning process has become increasingly important. This thesis proposes an effi-

cient CPP algorithm based on a random sampling scheme for spray painting appli-

cations. We have improved on the conventional CPP algorithm by alternately it-

erating the path generation and node sampling steps. This method can reduce the

computational time by reducing the number of sampled nodes. We also suggest a
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new distance metric called “upstream distance” to generate reasonable path follow-

ing given vector field. This induces the path to be aligned with a desired direction.

Additionally, one of the machine learning techniques, support vector regression

(SVR) is utilized to identify the paint distribution model. This method accurately

predict the paint distribution model as a function of the painting parameters. We

demonstrate our algorithm on several types of analytic surfaces and compare the

results with those of conventional methods. Experiments are conducted to assess

the performance of our approach compared to the traditional method.

Keywords: Uniform coverage path planning, Spray painting, Traveling salesman

problem, Upstream distance, Support vector regression, Paint distribution

model

Student Number: 2018-24497
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1
Introduction

Coverage path planning (CPP) is the task of determining an efficient path that

covers all points in the workspace under the prescribed environments and con-

straints [1]. The field of CPP has attracted considerable attention in recent decades

due to its numerous applications in robotics that include spray painting [2], farm-

ing [3], cleaning [4], mining [5], surveillance [6], inspection [7], and exploration [8].

In early works on CPP applications, agents manually planned a path and pro-

grammed a robot based on their experiences. This hand-operated method is not

only time-consuming but also renders the output subject to the daily conditions or

an individual’s proficiency. With progressively complex and extensive applications

of CPP, automating the planning process has become increasingly important. An

automatic planning algorithm reduces the required programming time and creates

a standard form of path by providing guidelines for effective paths.

Studies on CPP with vector fields have yet to receive the same attention as the

classical CPP problem even though such studies may prove useful. For example, an

exploration rover may need to navigate tough, hilly terrain in the shifting winds, or

1
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(a) (b) (c)

(d) (e) (f)

Figure 1.1: Applications of Coverage Path Planning (a) spray painting, (b) farm-

ing, (c) cleaning, (d) surveillance, (e) inspection, (f) exploration

an underwater inspection robot may be required to swim in the shifting currents

of water. In such cases, the shortest path may no longer be the optimal path,

as moving against the flow may worsen certain objectives [9]. A few studies have

tried to reflect the preference for path to be aligned with the desired direction

by specifying the robot dynamics determined by the power consumption model.

However, because these studies utilized the concept of mechanical work, it was

still difficult to identify the path that accurately followed the given vector field.

Therefore, it is essential to devise a path planning method where the generated

path exactly follows given vector field.
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In CPP, some tasks are more challenging than others depending on the addi-

tional output requirements necessary for the application. For example, in automo-

tive spray painting applications, agents must consider uniform deposition of the

paint materials while creating a path on automotive surface [10]. The material de-

position is typically multi-objective process that minimizes the cycle time while

achieving an acceptable uniformity of deposition pattern. Uniformity is generally

measured as a standard deviation of thickness of the deposed material over the

surface. This new type of path planning is called uniform coverage path planning

(UCPP), in which the complicated problem of the conflict of criteria for path gen-

eration arises and must be solved to balance the overall cost trade-offs with the

requirement of paint uniformity [2].

In studies on UCPP, a fixed paint distribution model is assumed and then

solved as an optimization problem. However, due to the complex physical phe-

nomenon of the paint deposition process, a numerical model cannot accurately re-

flect the real behaviors of the robotic system. Therefore, it is essential to apply

an alternative method for model prediction to create uniform coverage path with

reasonable precision. Since numerous parameters associated with the environment

affect the distribution model, it can be a solution to identify the relation between

these parameters and deposition pattern.

1.1 Related Work

In the past few decades, a variety of CPP methods has been proposed with various

robotic applications. Early works on CPP found in the literature typically address

the problem of covering two-dimensional (2D) workspaces. Numerous studies in 2D
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environments utilize various approaches such as artificial potential field [11], ap-

proximate cellular decomposition [12], exact cellular decomposition [13], template-

based model [14], sampling-based model [15], neural networks [16], and fuzzy logic

[17]. One of the most frequently used CPP methods in a flat plane is cellular

decomposition, which divides the workspace into several non-overlapping regions

without obstacles. Each cell is easily covered because it requires only simple back-

and-forth motions to sweep the area [18, 19]. Another common method for CPP is

template-based approaches. Hofner et al. [14] introduced a template-based method

using motion templates and motion mosaic, where the obstacles are modified by

problem environments. Since this method requires prescribed map and templates,

it is difficult to adapt to environmental changes. In addition, it has difficulty in-

vestigating which area is uncovered by the created path. Thus, uncovered area

appears near obstacles even after supplementary templates are utilized.

More recent studies have addressed the CPP problems in 3D environments.

In 3D workspace, CPP typically requires a full sweep of 2D surfaces boundary

of 3D structure [7]. One of the recently used CPP methods in 3D space is a

sampling-based approach. Englot et al. [20] proposed a sampling-based algorithm

to cover a boundary of complex 3D structures for ship hull inspections. Addition-

ally, Papadopoulos et al. [21] built upon the idea of a sampling-based planning

algorithm, which inspects complex structures using systems with differential con-

straints. Here, the CCP problem is separated into two subproblems, which are then

solved sequentially. The first subproblem is a set cover problem (SCP) that deter-

mines a set of nodes for which the intersection of the areas centered at the nodes

covers all workspaces. The second subproblem is traveling salesman problem (TSP)

that determines the shortest path to visit all nodes generated by the previous SCP
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solver. Because the TSP is NP-hard [22], the computational complexity of the al-

gorithms increases exponentially as the number of nodes increases. Therefore, the

solution is approximated using heuristic approaches to obtain less time complex-

ity of the algorithm. Englot et al. [23] suggested polynomial-time approximation

algorithm that improves the speed of the solver within guaranteed factors of op-

timality.

Earlier studies on randomized path planning on vector fields were mostly con-

fined to application-specific contexts. The work of Jaillet et al. [24] addresses the

planning problem on general vector fields. In this case, the preference for the di-

rection of motion is determined by the negative gradient of the predefined po-

tential function in the configuration space. Given a path created in configuration

space, mechanical work can be calculated along the path, where only segments

along which the potential increases contribute to the mechanical work. This crite-

rion is utilized as the extent to which a certain path follows the desired direction

as specified by the vector field in randomized motion planning problems. Ko et al.

[9] formulated a more advanced mathematical criterion by which a certain path fol-

lows the desired direction as specified by the vector field, assuming premise that

more control effort is required to move against the vector field.

Among the various CPP problems in 3D systems, Atkar et al. [2] present a

planning algorithm specifically focused on the spray painting of automotive parts,

which guarantees uniform paint distribution over a surface. They introduced a slic-

ing plane method, which is an efficient UCPP method that renders the optimiza-

tion problem of coverage path tractable. Their approach decomposed the main

problem into two subproblems that can be solved separately. The method first

generates a seed curve and then repeatedly offsets it sideways determining the



1.1. Related Work 6

spacing between adjacent curves. In the first step, determining a seed curve af-

fects the spatial location and orientation of the whole path, which, in turn, affects

the uniformity of the paint thickness. In the second step, the method optimizes

the spacing between the curves, called the pitch, to overlap the paint profiles of

two adjacent routes in the direction perpendicular to the curves. This enables the

uniform deposition of the paint. However, this method is useful only in a sim-

ple environment because a typical model for a paint distribution was applied. For

an automotive body, the complex geometry of a non-planar surface may induce

the deterioration of the painting quality because the paint distribution pattern

depends on the geometric properties of surface.

Researchers have used simple planar deposition models to establish geomet-

ric projective models such as the rotation model, which is based on the rotated

parabolic thickness profile [25], the bivariate Gaussian model [26], the Cauchy or

Gaussian distributions model [27], and the beta distribution model [28]. Atkar et

al. [29] proposed a highly accurate dual Gaussian paint deposition model that pro-

vides a significant improvement in painting pattern prediction over earlier models

while retaining sufficient tractability for use in path planning tools. The deposition

model consists of an offset 1D Gaussian revolved about the axis of a spray gun,

and a 2D Gaussian aligned with the origin of the distribution model plane to cap-

ture the shape of the paint distribution. In this article, a new practical cumulative

rate model for painting was derived, and the experiments on spray painting were

performed to determine the 1D thickness profile function of the spatial painting

distribution.
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1.2 Contribution of Our Work

In this study, we propose a new method for automated UCPP, which resolves the

aforementioned disadvantages. Also, we apply our efficient UCPP method espe-

cially in spray painting applications. Our first contribution is a new framework

that can reduce the computational complexity. Conventional sampling-based CPP

methods incrementally sample nodes until all points on a target surface is fully

covered, and then generate a path that passes through all sampled nodes by solv-

ing the TSP. On the contrary, in our algorithm, we alternately iterate the path

generation and node sampling steps. In the node sampling step, sampling is ex-

cluded for the area covered by the generated path. It leads to creating fewer nodes

and reducing the computation time. The second contribution of our work is intro-

ducing a new distance metric for solving the TSP. Most TSP algorithms generally

adopt Euclidean distance metric. However, this is not proper in some situations

where there is a system drift because Euclidean distance cannot reflect the prefer-

ence for path to be aligned in a direction parallel to the vector field. As an alter-

native to this, we regard that the distance against the given vector field is greater

than Euclidean distance. This metric help determine the optimal path to be gen-

erated aligning with a desired direction. Finally, we apply an advanced method

for model prediction to improve a painting quality. Researches so far have utilized

fixed distribution model, but it can not reflect complex effect in physical environ-

ment. Here, we construct a machine learning network to predict an unknown dis-

tribution model by investigating the relationship between the system parameters

and the paint distribution pattern.
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1.3 Organization of This Thesis

The remainder of this thesis is organized as follows. In chapter 2, we review the

necessary background for our study. Chapter 3 describes our experimental method

used in our research. We enumerate the process while explaining our contributions.

Chapter 4 presents the experimental results of our algorithm. Also, appropriate

discussions are proposed to explain the experimental result. We compare our new

method with the existing planning algorithm. Chapter 5 concludes our thesis with

summary of our research and future work.



2
Preliminary Background

In this chapter, we focus on the theoretical background that is the basis of our

study. First, we briefly review the elementary differential geometry of surfaces in

R3 to understand the basic properties of them. Our ultimate goal is to understand

the concept of shape operator stated in the last subsection. Second, we explain the

TSP related to CPP problem. We define the original TSP and introduce its vari-

ations, and then we present heuristic algorithms to solve that problem efficiently.

Third, we introduce the randomized path planning method and the upstream crite-

rion that can quantify how much the path follows the given vector fields. Lastly, we

review one of the machine-learning techniques, support vector regression (SVR),

to predict the nonlinear relation between the input and output data. We begin

with a single-output case and ultimately end with multi-output one.

9
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2.1 Elementary Differential Geometry of Surfaces in R3

It is necessary to consider the geometry of the target surface when planning a

uniform coverage path. For example, the curvature of a surface is an important

and influential factor in UCPP since the coverage area greatly depends on the

curvature at each point. Moreover, it may be difficult to achieve uniform coverage

if the curvature is drastically changed along the path. The following subsections

explain how the curvature is analyzed in mathematical form.

2.1.1 Representation of Surfaces

There are various ways to express 2D surfaces, and these expressions are comple-

mentary to each other. Table 2.1 represents the widely used expressions for com-

mon examples of surfaces. The most common method to express surfaces is with

the parametric expression listed in the third row of the Table 1. This expression

is also used in this thesis.

2.1.2 Normal Curvature

Assuming there are surface S and point p on S, one way to analyze the local

shape of a surface S at a point p is to draw curves on S through p and find out

the unique vector perpendicular to principal curvature vector of the curves. For a

curve in R3, to evaluate how much bent the curve is, we calculate the curvature

that is determined by only position of the point p. However, for a surface, it is dif-

ficult to understand in which direction and how much the surface is bent because

the curvature may vary based on the direction. More specifically, the position of

a point p as well as the direction determine the curvature of a surface. We begin

with definition of normal curvature:
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hyperbolic paraboloid unit sphere

Parametric

expression

(
u, v, u2 − v2

)
(sinu cos v, sinu sin v, cosu)

Implicit

expression
x2 − y2 − z = 0 x2 + y2 + z2 = 1

Explicit

expression
z(x, y) = x2 − y2 z(x, y) = ±

√
1− x2 − y2

Solution set

expression
{(x, y, z) ∈ R3|x2 − y2 − z = 0} {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}

Contour

expression

F−1(0)

s.t. F (x, y, z) = x2 − y2 − z

F−1(1)

s.t. F (x, y, z) = x2 + y2 + z2

Table 2.1: Five expressions to describe surfaces.
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Definition 2.1.1. Let S be a regular surface, and let X : D → R3 be a parametriza-

tion of coordinate neighborhood V of S. Let α : I → R3 be a parametrization for

a curve C that lies on S in V . The normal curvature of S along C is the function

κn(t) =
1

s′
~T ′ · ~N = k(~P · ~N) = k cos θ, (2.1.1)

where ~T and ~P is the unit tangent vector and the principal normal vector of the

curve ~C, respectively, ~N is the normal vector of the surface S, and θ is the angle

between the ~P and ~N [30].

2.1.3 Shape Operator

Suppose that Z is a Euclidean vector field on a surface S in R3. The derivative

∇vZ implies the rate of change of Z in the v direction. Let α be a curve in S

that has initial velocity α′(0) = v. Let Zα be the restriction of Z to α, that is,

the vector field t→ Z(α(t)) on α. Then

∇vZ = (Zα)′(0). (2.1.2)

Now, we can evaluate a mathematical measurement of the shape of a surface

in R3.

Definition 2.1.2. If p is a point on S, then for each tangent vector v to S at p,

let

Sp(v) = −∇vU, (2.1.3)

where U is a unit normal vector field on a neighborhood of p in S. Sp is called

the shape operator of S at p derived form U [31].
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The tangent plane of S at any point p, Tp(S), is composed of all Euclidean

vectors orthogonal to U(p). Thus the derivative ∇vU in the v direction implies

how much the tangent planes are changing in the v direction.

Theorem 2.1. For each point p of S ⊂ R3, the shape operator is a linear operator

Sp : Tp(S)→ Tp(S), (2.1.4)

on the tangent plane of S at p.

Proof. Letting U be a unit vector, U · U = 1. Thus by a property of derivatives,

0 = ∇v(U · U) = 2∇vU · U(p) = −2Sp(v) · U(p), (2.1.5)

where vector v is tangent to S at p. Since U is also a normal vector, it follows

that Sp(v) is tangent to S at p. Thus Sp is a function from Tp(S) to Tp(S). The

linearity of Sp is a consequence of a linearity property of derivatives:

Sp(av + bw) = −∇av+bwU = −(a∇vU + b∇wU) = aSp(v) + bSp(w). (2.1.6)

Since we have proved that the shape operator is a linear operator, it is possible

to express the shape operator as a matrix form. First, we define some variables

for the matrix expression. We can define three real-valued functions on D using

X stated in Definition 2.1.1

E = Xu ·Xv

F = Xu ·Xv = Xv ·Xu

G = Xv ·Xv,

(2.1.7)
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where Xu =
∂X

∂u
and Xv =

∂X

∂v
If Sp is the shape operator derived from U , we define three more real-valued

functions on D:

L = Sp(Xu) ·Xu

M = Sp(Xu) ·Xv = Sp(Xv) ·Xu

N = Sp(Xv) ·Xv.

(2.1.8)

Because Xu, Xv are bases for the tangent space of S at each point p, it is clear

that these functions uniquely determine the shape operator.

L, M , and N can be calculated by more simple way. For example, since U ·

Xu = 0, partial differentiation with respect to v yields

0 =
∂

∂v
(U ·Xu) = Uv ·Xu + U ·Xuv. (2.1.9)

Since Uv = −Sp(Xv), the preceding equation becomes

Sp(Xv) ·Xu = U ·Xuv. (2.1.10)

Therefore,

L = Sp(Xu) ·Xu = U ·Xuu

M = Sp(Xu) ·Xv = Sp(Xv) ·Xu = U ·Xuv

N = Sp(Xv) ·Xv = U ·Xvv.

(2.1.11)

For each point p of S ⊂ R3, and bases Xu, Xv of tangent space TpS, the shape

operator finally can be formulated as matrix form:
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[Sp]{Xu,Xv} =

 E F

F G

−1 L M

M N

 . (2.1.12)

2.2 Traveling Salesman Problem

Sampling-based CPP method is similar to solving the covering salesman prob-

lem, which is a variation of the original TSP. The following subsections provide

an overview of the TSP to help clarify the process of CPP. We first describe the

original TSP and introduce its variations, and then we present approximated al-

gorithms to solve that problem with less computational complexity.

2.2.1 Definition

A basic interpretation of TSP is the situation of finding the shortest path of a

salesperson who starts from an initial city, visits the prescribed n cities, and re-

turns to the initial position in a way that each city is visited exactly once (Figure

2.1). Although this interpretation appears quite simple, this problem is known as

one of the most challenging problems because it is a type of combinatorial opti-

mization problem. The problem can be defined as a mathematical form by graph

theory [32].

Let G = (V,E) be a graph where V and E are a set of vertices and edges,

respectively. For each edge e in E, a cost ce is allocated. The objective is to find

a Hamiltonian cycle such that sum of the costs of the edges on the route is as

small as possible and that the path passes through each vertex only once. Without

loss of generality, G is typically considered as a complete graph, otherwise, an
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Figure 2.1: Representation of Traveling Salesman Problem

infinite cost is assigned to the missing edges. Letting V be {v1, v2, · · · , vn}, E is

expressed as {eij |i, j = 1, 2, · · · , n} where i and j are indexes of two vertices. The

matrix C = (cij)n×n is defined as a cost matrix, where the entry cij corresponds

to the cost of the edge joining vertices vi and vj such that all diagonal entries are

zeros. For TSP in real-world, V and E correspond to a set of cities and routes,

respectively. The cost cij is typically set to the Euclidean distance between cities

i and j.

Given a set of nodes and a distance metric between the nodes, one can generate

a complete path by connecting all nodes while considering multiple objectives. The

typical objective is to minimize the total path length, i.e., the goal is to find an

order of nodes with the minimum cost. Many algorithms have been proposed to

determine the optimal solution of the TSP and can be understood in the context

of integer linear programming (ILP). Thus, the problem can be formulated as the

following optimization problem:
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min
n∑

i,j=1

cijxij

s.t.
n∑
i=1

xij = 1 j = 1, 2, · · · , n

n∑
j=1

xij = 1 i = 1, 2, · · · , n

xij ∈ {0, 1}

u1 = 1

2 ≤ uij ≤ n i = 2, · · · , n

ui − uj + 1 ≤ n(1− xij) i, j = 2, · · · , n

(2.2.13)

In above optimization problem, the first three constraints specify that the passes

through every node exactly once. Here, xij is a binary variable associated with ev-

ery edge eij , which is equal to 1 if the edge eij is used in the optimal solution,

otherwise, it is equal to 0. The other three constraints are MTZ constraints that

prevent the solution from creating sub-tours. In other words, these sub-tour elimi-

nation constraints ensure that the solution contains no sub-tour involving less than

n vertices. Variable ui indicates the vertex i’s order of visit and this is proposed

here to make the optimization problem most compact.

2.2.2 Variations of the TSP

There are many variations of the basic TSP originating from real applications. One

of these variations, the path-TSP, is a problem to find a Hamiltonian path which

has the minimum cost, between two nodes instead of returning to the initial node.
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In the manner of graph theory, given two predefined vertices vi and vj in graph G,

this problem can be solved as a TSP by substituting a cost cij with –M where M

is a large number. If no nodes are designated, the path-TSP becomes identical to

the original TSP. In the path-TSP, this problem can be further classified according

to whether the two nodes are fixed or free.

Unlike the classical TSP, the max-TSP is a problem to find a Hamiltonian

cycle where the total cost of the edges in the path is a maximum. For example, in

the reinforcement learning approach, a cost is replaced by the concept of reward,

which increases the objective function. The max-TSP can be solved by replacing

each edge cost with its minus value [33].

Letting the set of nodes V partition into clusters V1, · · · , Vk, a clustered-TSP

finds a minimum cost tour in G subject to the constraint that nodes in the same

cluster must be visited sequentially. In other words, the tour can not go over an-

other cluster until it visits all nodes in the present cluster. This problem converges

to a basic TSP by allocating very large cost M to the each of inter-cluster edges.

With partitioned clusters V1, · · · , Vk defined in the previous setting, covering-

TSP finds the shortest cycle in graph G, which visits exactly one node from each

cluster. This problem converges to the original TSP when each cluster has only

one node, that is to say when every node makes its own cluster.
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2.2.3 Approximation Algorithm for TSP

Because the TSP is known as an NP-hard problem, there is no exact algorithm to

solve it with a polynomial time complexity. Therefore, many researchers have uti-

lized a near-optimal algorithm to solve the TSP efficiently [32]. We, therefore, con-

centrate on a number of heuristic approaches known to yield reasonable TSP solu-

tions in an empirical sense. Broadly speaking, heuristic algorithms for the TSP ap-

ply a tour construction approach which gradually constructs a solution by adding

a new node at each step and tour improvement approach which improves a feasible

solution by performing exchanges among nodes. The best method is a composite

algorithm combining these two approaches.

Best insertion algorithm is one of the construction approach. It builds up a

feasible tour by adding a new node into the existing path satisfying. Specifically,

it construct a primary path consisting of arbitrary two nodes, and then repeat

the procedure of inserting another node into the path satisfying least distance in-

crement. The computational complexity of this type of algorithm varies between

O(n2) and O(nlogn) depending on the condition of problem. This method is not

much different from greedy algorithm, but one can get a better solution than

greedy method.

k-opt algorithm is one of the improvement approaches. It first finds out any

initial tour. And then It optimizes the path by eliminating k arcs from the tour

and immediately reconnecting the incomplete nodes in all possible ways. If shorter

path is created, replace the initial tour with new one. Repeat this reconnection

step until no significant performance enhancement occurs. In this case, the number

of possible solutions is of the order of nk. In general, since k is chosen as 2 or 3,

the computational complexity of this type of algorithm is O(n2) or O(n3)
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2.3 Path Planning on Vector Fields

A given vector field defined in a configuration space can be used to represent a sys-

tem flow such as a wind velocity field, water current, or gradient field for some po-

tential function. Sometimes, the preference for the path to be aligned with the de-

sired direction must be considered. The following subsections explain randomized

path planning method based on sampling approach and then introduce a math-

ematical criterion that measures how much the created path deviates from the

preferred direction as specified by the vector field.

2.3.1 Randomized Path Planning

One of the randomized path planning methods is the rapidly-exploring random

tree (RRT) algorithm. It is one of the powerful path planning algorithms in the

way that it quickly searches for a reasonable path in high-dimensional space. The

main idea of RRT algorithm is that the tree expands as it stretches into the un-

explored area. It is widely used in path planning because it ensures probabilistic

completeness.

2.3.2 Upstream Criterion

Given a configuration space, a tangent vector representing the desired direction

of movement is attached to each point on configuration space. The collection of

vectors attached to the configuration space constitutes a vector field. Naturally,

the most efficient thing to do is to always move along the direction of the vector

field. Moving against the vector field requires more control effort. On the premise

that minimizing this control effort is desirable, an integral functional, called an

upstream criterion, is proposed to measure the extent to which the path goes in
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the opposite direction of a given vector field. This path integral functional, the

upstream criterion, can be expressed as:

U(q) =

∫ L

0
(||f(q(s))|| − 〈f(q(s)), q′(s)〉)ds (2.3.14)

2.4 Support Vector Regression

In UCPP, due to the complicated physical phenomenon of the paint deposition

process, it is difficult to accurately predict the paint distribution pattern by ap-

plying a simple model. Hence, one of the machine learning techniques, SVR, is

proposed as an alternative method for model prediction with reasonable accuracy.

The following subsections present an overview of the SVR.

2.4.1 Single-Output SVR

The SVR is a type of supervised machine learning technique that establishes the

mapping between input and output data. This technique presents one of the most

robust prediction methods based on a statistical learning framework. In the SVR,

the simplest case is that the output is lD (scalar) data for the so-called single-

output SVR. Suppose we have training data set {(x1, y1), · · · , (xn, yn)} ⊂ Rd ×

R where d is the input dimension. The ε-SVR, a well-known single-output SVR,

builds a model f(x) that has at most ε-deviation from the actual target value

yi for all the training data [34]. At the same time, the function is also as flat as

possible. We begin the discussion by expressing the hypothesis as a linear function

f :

f(x) = 〈x,w〉+ b w ∈ Rd, b ∈ R. (2.4.15)
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where 〈 , 〉 denote inner product in Rd

Flatness implies a small w in the case of equation 2.4.15. One way to guar-

antee this requirement is minimizing the norm, ||w||2 = 〈w,w〉. We can write this

problem as the following convex optimization problem:

min
1

2
||w||2

s.t. yi − 〈xi, w〉 − b ≤ ε

〈xi, w〉+ b− yi ≤ ε

(2.4.16)

The implicit assumption in equation 2.4.16 is that the function f approximates

all training data pairs (xi and yi) with ε-precision.

In some cases, however, some errors are allowed, in which case the slack vari-

ables ξ, ξ∗ are introduced, similar to the soft margin loss function used in support

vector machine (SVM). New optimization problem is proposed as follows:

min
1

2
||w||2 + C

n∑
i=1

(ξi + ξ∗i )

s.t. yi − 〈xi, w〉 − b ≤ ε+ ξ∗i

〈xi, w〉+ b− yi ≤ ε+ ξi

ξi, ξ
∗
i ≥ 0.

(2.4.17)

The constraint C in equation 2.4.17 reflects the ratio of importance between

the flatness of function f and the total amount of deviations larger than ε. Figure

2.2 depicts the overall situation graphically. Because the deviations are penalized

in a linear fashion, only the points outside the shaded region contribute to the

cost in so far.
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Figure 2.2: Representation of single-out Support Vector Regression

2.4.2 Dual Problem of SVR

The previous description can be solved more easily by means of dual function.

Moreover, as we will see in the next subsection, the dual formulation provides the

key for extending the SVR to a nonlinear function. Hence, we use a standard du-

alization method which formulate a Lagrange function from the primal objective

function and the corresponding constraints by introducing Lagrange multipliers

[35].

L =
1

2
||w||2 + C

n∑
i=1

(ξi + ξ∗i )−
n∑
i=1

(ηiξi + η∗i ξ
∗
i )

−
n∑
i=1

αi(ε+ ξi − yi + 〈xi, w〉+ b)

−
n∑
i=1

α∗i (ε+ ξ∗i + yi − 〈xi, w〉 − b)

(2.4.18)

Here L is the Lagrange function and αi, α
∗
i , ηi, η

∗
i are Lagrange multipliers. The
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dual variables in equation 2.4.18 have to satisfy positivity constraints, i.e.

αi, α
∗
i , ηi, η

∗
i ≥ 0 (2.4.19)

The saddle point condition is that the partial derivatives of L with respect to

the primal variables have to become zero for optimality:

∂L

∂b
=

n∑
i=1

(α∗i − αi) = 0 (2.4.20)

∂L

∂w
= w −

n∑
i=1

(α∗i − αi)xi = 0 (2.4.21)

∂L

∂ξ
= C − αi − ηi = 0 (2.4.22)

∂L

∂ξ∗
= C − α∗i − η∗i = 0 (2.4.23)

Above equations are substituted for equation 2.4.18 to yields the dual opti-

mization problem.

max
αi,α∗

i

− 1

2

n∑
i,j=1

(αi − α∗i )(αj − α∗j )〈xi, xj〉

− ε
n∑
i=1

(αi + α∗i ) +
n∑
i=1

yi(αi − α∗i )

s.t.
n∑
i=1

(αi − α∗i ) = 0, 0 ≤ αi, α∗i ≤ C

(2.4.24)

Equation 2.4.21 can be rewritten as follows:

w =

n∑
i=1

(αi − α∗i )xi (2.4.25)

Thus,
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f(x) =
n∑
i=1

(αi − α∗i )〈xi, x〉+ b (2.4.26)

This is a support vector expansion where w can be described as a linear com-

bination of the xis. The complexity of the function is independent of dimension of

the input data and rather depends on the number of support vectors. Moreover,

since f(x) is described as an inner product of two data, we need not calculate w

explicitly. These properties will be useful for formulation of nonlinear system.

2.4.3 Kernel for Nonlinear System

Nonlinear SVR algorithm could be achieved by processing the training input data

into some feature space F by a mapping Φ : X → F , and then applying the

standard SVR algorithm. As noted in the previous subsection, the SVR algorithm

only depends on inner products between input data. Hence it is enough to know

K(x, x′) := 〈Φ(x),Φ(x′)〉 rather than Φ explicitly. This analysis allows us to restate

the SVR optimization problem by substituting 〈x, x′〉 with K(x, x′):

max
αi,α∗

i

− 1

2

n∑
i,j=1

(αi − α∗i )(αj − α∗j )K(xi, xj)

− ε
n∑
i=1

(αi + α∗i ) +

n∑
i=1

yi(αi − α∗i )

s.t.

n∑
i=1

(αi − α∗i ) = 0, 0 ≤ αi, α∗i ≤ C

(2.4.27)

Also, the equation 2.4.25, 2.4.26 may be reformulated as

w =
n∑
i=1

(αi − α∗i )Φ(xi), (2.4.28)

and
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f(x) =
n∑
i=1

(αi − α∗i )K(xi, x) + b. (2.4.29)

2.4.4 Multi-Output SVR

Notation

The following notations are used in this subsection. Vectors and matrices are de-

noted by small bold letters and capital letters, respectively. If A is an n×m matrix,

we denote by Ai ∈ Rm and Aj ∈ Rn the i-th row and the j-th column of A. Let

{(xi,yi)}ni=1 be a set of training data, where xi ∈ Rd is an input data and yi ∈ Rm

is an output data. n is the number of data pairs, also d and m are the dimension

of input and output space, respectively. Some vectors and matrices, derived from

this basic setting, are predefined with their dimension in Table 2.2.

The previous single-output framework is extended into multi-output SVR where

output data are in multi-dimensional space. However, linear soft margin loss func-

tion is no longer available in the multi-output case. Hence, the least-square SVR

is proposed to replace the linear loss with quadratic one. Given training dataset,

multi-output regression focuses on predicting an output vector y ∈ Rm from a

given input vector x ∈ Rd by identifying a mapping from Rd to Rm. The multi-

output SVR solves this problem by finding W and B that minimizes the following

objective function with some constraints:

min
W,B

1

2
tr(W TW ) + γ

1

2
tr(ΞTΞ)

s.t. Y = XTW +B + Ξ

(2.4.30)

where Ξ is soft margin matrix.
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X = (x1, · · · ,xn) ∈ Rd×n

Y = (y1, · · · ,yn)T ∈ Rn×m

W = (w1, · · · ,wm) ∈ Rd×m

Ξ = (ξ1, · · · , ξm) ∈ Rn×m+

b = (b1, · · · , bm)T ∈ Rm

B = (b, · · · ,b)T︸ ︷︷ ︸
n

∈ Rn×m

A = (α1, · · · , αm) ∈ Rn×m

ỹ = (YT
1 , · · · ,YT

m)T ∈ Rmn

α̃ = (αT1 , · · · , αTm)T ∈ Rmn

0n = (0, · · · , 0)T ∈ Rn

1n = (1, · · · , 1)T ∈ Rn

In =


1 · · · 1
...

. . .
...

1 · · · 1

 ∈ Rn×n

Ω =


XTX · · · XTX

...
. . .

...

XTX · · · XTX


︸ ︷︷ ︸

m

∈ Rmn×mn

Q =


XTX · · · 0

...
. . .

...

0 · · · XTX


︸ ︷︷ ︸

m

∈ Rmn×mn

P =


1n · · · 0
...

. . .
...

0 · · · 1n


︸ ︷︷ ︸

m

∈ Rmn×m

H = Ω + γ−1Imn +mQ ∈ Rmn×mn

S = P TH−1P ∈ Rm×m

Table 2.2: Description of vectors and matrices used in multi-output SVR

The Lagrange function of the above optimization problem is

L =
1

2
tr(W TW ) + γ

1

2
tr(ΞTΞ)

− tr(AT (XTW +B + Ξ− Y ))

(2.4.31)

The following set of linear matrix equations are obtained from KKT conditions:
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∂L

∂W
= W −XA = 0 (2.4.32)

∂L

∂b
= AT1n = 0 (2.4.33)

∂L

∂ξ
= γΞ−A = 0 (2.4.34)

∂L

∂A
= XT +B + Ξ− Y = 0 (2.4.35)

Eliminating W and Ξ, one can get the following linear matrix equation:

 0ml×m P T

P H

 b

α

 =

 0m

y

 (2.4.36)

However, it is difficult to find an efficient algorithm to solve this problem since

equation 2.4.36 is not positive definite. This can be overcome by reformulating it

into as a positive definite form:

 S 0mn×mn

0m×m H

 b

H−1Pb+ α

 =

 P TH−1y

y

 (2.4.37)

This new linear system guarantees a unique solution, and thus can be solved

by fast and efficient numerical optimization methods. Finally, letting the solution

of above equation be α̃∗ and b∗, the corresponding decision function for the multi-

outputs is

f(x) =


∑m

i=1

∑n
j=1 α̃

∗
i,jK(x, xj)

...∑m
i=1

∑n
j=1 α̃

∗
i,jK(x, xj)

+ b∗T (2.4.38)



3
Methods

In this chapter, we describe the proposed efficient UCPP method. In the first sec-

tion, we explain the way we create a complete coverage path and the way we re-

duce the computation time with our iterative method. Additionally, we propose

the new distance metric to reflect the preference for a path to be aligned with a

given vector field. The second section then proposes techniques to achieve uniform

coverage in spray painting applications.

3.1 Efficient Coverage Path Planning on Vector Fields

Conventional sampling-based CPP methods incrementally create nodes until all

points on a target surface is fully covered, and then generate a path that passes

through all the sampled nodes by solving the TSP. Contrary to existing CPP al-

gorithms, we do not separate the problem into two subproblems but address them

at once to reduce the computational complexity of the algorithm. We alternately

iterate the path generation and node sampling steps. Furthermore, assuming that

29
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moving against the vector field is regarded as traveling longer distances, we formu-

late a more advanced distance metric and apply this metric to the TSP solver. Al-

gorithm New Coverage Path Planning() summarizes our new coverage path plan-

ning method.

Algorithm New Coverage Path Planning

Input: surface S, initial node q1 on S

Initialize: N = {q1}, E = ∅, T = {N,E}

1: while True do

2: qnew = MakeNewNode(S, T )

3: if C = ∅ then

4: N ← N ∪ {qnew}

5: E ← hTSP(S,N,E)

6: T ← {N,E}

7: C ← S − Coverage(S, T )

8: else

9: break

10: end if

11: end while

12: return T

We first construct an initial path T of which the root is the predefined initial

node q1. Then, at each iteration step, we expand the path by executing functions

MakeNewNode() and k-nearest-TSP(). After we obtain a new path as an output of

the algorithms, we can compute the region that is covered by the newly created

path. If all points on a target surface are fully covered, we terminate the algorithm,

otherwise, the iteration process is repeated.
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3.1.1 Efficient Node Sampling

When we expand the path, we first sample a new node using the function MakeNewNode().

Below algorithm represents the process of this function which takes the current

path as an input and returns new node.

Algorithm MakeNewNode()

Input: surface S, path T

1: if q on S is covered by T then

2: D(q) = 0

3: else

4: D(q) = 1

5: end if

6: Compute probability density function P (q) ∝ D(q) s.t.
∫
S P (q) = 1

7: Sample a node qnew ← rand(D(q))

8: return qnew

Here, we propose our first contribution in which sampling is restricted in the

area covered by the generated path. Figure 3.1 describes this procedure. When we

sample a new node, point p has much higher probability to be sampled than point

q because q is already covered by the path. Fewer nodes will be sampled by uti-

lizing this method. Because the computational complexity of the exact TSP algo-

rithm is proportional to n!, where n is the number of sampled nodes, our method

can significantly reduce the computation time.
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Figure 3.1: Scheme of sampling exclusion

3.1.2 Divide and Conquer Strategy

The divide and conquer algorithm works by breaking down a main problem into

two or more subproblems of the same or similar type until the subproblems be-

come simple enough to be solved. The solutions of the subproblems are then com-

bined to give a solution of the original problem. Below algorithm describes the

process of function, k-nearest-TSP() which is one of the heuristic TSP solvers.

Figure 3.2 describes this algorithm graphically. We first find the k-nearest nodes

of qnew and then solve the TSP using only these k nodes. Finally, we connect this

newly generated path with the original sub-path. This algorithm has a complexity

that is proportional to n× k!× k2. Therefore, if k is set to a much smaller value

than n,the computational complexity is greatly reduced.
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Algorithm hTSP()

Input: surface S, sampled node qnew, path T

Initialize: set parameter k

1: if n(N) ≤ k then

2: k ← n(N)

3: end if

4: Find k-nearest nodes near qnew

Nk = {q1, · · · , qk}, where qi is one of the k-nearest nodes

5: Solve original TSP problem using Nk

Esub ← TSP(Nk)

6: Break tree T removing the node in Nk one by one

Tk = {T1, T2, · · · }, where Ti is a fragmented tree

7: Connect Esub and all elements in Tk

E = Connect(Esub, Tk)

8: return E

Figure 3.2: Scheme of k-nearest-TSP() algorithm
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Figure 3.3: Three points on a vector field F (q)

3.1.3 Upstream Distance

In the TSP algorithms, distance metric between two nodes must be defined to

solve the optimization problem. And TSP solvers generally adopt the Euclidean

distance metric for its convenience. However, this may not adequate in some situ-

ations where there is a system drift. Therefore, a new distance matrix should be

introduced because a Euclidean distance cannot reflect the preference for the path

to be aligned with a direction parallel to the vector field. Here we suggest a new

distance metric called the “upstream distance,” which is our second contribution.

It can be formulated in a form derived from the upstream criterion previously

mentioned in chapter 2.3.2.

Figure 3.3 shows three points on a certain vector field. Although the Euclidean

distance between q1 and q2 is the same as that between q1 and q3, we deliberately

assume that the former distance is greater than the latter one. In other words,

we regard that the distance between two points placed in a direction that crosses

the stream is larger than the original Euclidean distance. Therefore, we define the
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upstream distance as follows:

distup(q1, q2) = ||q1, q2||+
∫
path
|f(q(s))× q′(s)| (3.1.1)

The first term is a Euclidean distance between q1 and q2, and the second term

is the additional distance that reflects the fact that moving against the vector field

is considered as traveling a farther distance. This new metric enables the optimal

path to follows the desired direction.

3.2 Uniform Coverage Path Planning in Spray Painting Ap-

plications

In this section, we particularly focus on spray painting applications and propose

techniques for UCPP on surface of automotive body. Since spray painting task

is usually performed by a robot, additional constraints related to the painting

robot must be considered. In addition, geometric properties of the automotive part

should also be analyzed because they significantly affect uniform coverage.

3.2.1 Minimum Curvature Direction

We have explained how to plan coverage path on a given vector field in the pre-

vious chapter, but have not yet discussed how to create a vector field. In spray

painting applications, there are preferences for robots to move in a certain direc-

tion. For example, given the geometry of an automotive body, it is preferred to

move in the direction of minimum curvature (Figure 3.4). This is due to the re-

striction that industrial robots usually move in a straight line.



3.2. Uniform Coverage Path Planning in Spray Painting Applications 36

Figure 3.4: Preferred direction for painting robot

The normal curvature of a 2D surface can generally be expressed as a multi-

variate function of the position and direction; therefore, it is difficult to obtain a

solution with analytic form. However, we can easily compute the principal curva-

ture and corresponding direction by means of a shape operator.

Shape operator Sp is formulated as a matrix form in equation 2.1.12. Then, the

eigenvalues k1 and k2 imply principal curvatures. If we express the corresponding

eigenvectors as v1 = (a1, b1)
T , v2 = (a2, b2)

T , the corresponding principal direction

can be formulated as v1 = a1Xu + b1Xv and v2 = a2Xu + b2Xv.

So, we can determine the optimal direction as follows:

 v1 if |k1| ≤ |k2|

v2 if |k2| ≤ |k1|
(3.2.2)

If we have an analytic form of a surface, we can create a vector field on the

surface applying the above analysis.

3.2.2 Learning Paint Deposition Model

One particularity of coverage path planning in painting applications, which is dif-

ferent from other forms of coverage path planning, is that uniformity of paint
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Figure 3.5: Concept of 1D paint distribution learning

distribution must be considered. The paint deposition quality highly depends on

the operating parameters. Although many parameters affect the paint distribution

model, we consider only seven parameters: paint flow rate, shaping air 1, 2, rota-

tional frequency of bell cup, voltage, distance to the painted parts, and speed of

robot’s end-effector. Our third contribution is to determine the relation between

the system parameters and paint distribution pattern by constructing SVR net-

work. This machine learning technique accurately predict the distribution model

as a function of the parameters. In general, the paint profile is represented in 2D

domain, but in this thesis, it is reduced to 1D for the sake of easy analysis.

Figure 3.5 shows the schematic of the 1D paint profile learning, summarizing

the problem definition. After we identify the paint distribution model, we optimize

the painting parameters reducing the standard deviation of paint thickness over

the surface.



4
Results

In this chapter, we demonstrate our new UCPP algorithm and present the exper-

imental results. Also, we evaluate the performance of our method by comparing

the results with that of the conventional sampling-based method.

4.1 Experimental Setup

Here, we simulate our algorithm on four types of surfaces, flat plane, quadratic

plane, half ellipsoid, half torus (Figure 4.1). Training data for the paint distribu-

tion pattern was provided by the Doolim-Yaskawa Research Center. All the al-

gorithms are implemented and performed with Python3 on an Intel Core i7-6700

3.40GHz CPU with 16GB of memory.
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(a) (b)

(c) (d)

Figure 4.1: Four types of surface used in simulation (a) flat plane (b) quadratic

plane (c) half ellipsoid (d) half torus
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(a) (b)

(c) (d)

Figure 4.2: Representation of minimum curvature direction on each surface (a) flat

plane (b) quadratic plane (c) half ellipsoid (d) half torus
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4.2 Simulation Result

We first create the vector field in the direction of a minimum curvature on each

surface (Figure 4.2). Next, we create a set of nodes and create a path by connect-

ing the nodes in order.

Figure 4.3 shows the result of our CPP algorithm on each surface. Each node

is annotated with a order of visit. The blue disks indicate the paint coverage at

each node. It can be observed that the generated path is aligned with the given

vector field.

Next, we determine the appropriate distribution model by learning the training

data set. Then, we optimized the painting parameters utilizing the network out-

put for uniform coverage. Figure 4.4 presents the results of the optimized paint

deposition as viewed from the top.

4.3 Discussion

Figure 4.5 summarizes the performance of our method with respect to three fea-

tures, upstream cost, standard deviation of the paint thickness, simulation time,

and compare it with that of conventional sampling-based method. We can easily

verify that the upstream cost associated with our method is much smaller, imply-

ing the path is well aligned with the given vector field. Moreover, it can be seen

that the simulation time has also been greatly reduced, thanks to the sampling

exclusion technique described in the chapter 3.1.1. Reasonable uniformity is also

achieved, where the standard deviation of the paint thickness of our method is

comparable to that of existing method.
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(a) (b)

(c) (d)

Figure 4.3: Simulation result of our Coverage Path Planning method on each sur-

face (a) flat plane (b) quadratic plane (c) half ellipsoid (d) half torus
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(a) (b)

(c) (d)

Figure 4.4: Simulation result of the optimized paint deposition on each surface (a)

flat plane (b) quadratic plane (c) half ellipsoid (d) half torus
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(a)

(b)

(c)

Figure 4.5: Performance of the conventional method and our method on each sur-

face (a) upstream cost (b) simulation time (c) standard deviation of paint thick-

ness



5
Conclusion

In this thesis, we propose an efficient UCPP algorithm based on a random sam-

pling scheme for spray painting applications. We have improved on the previous

versions of CPP algorithm by addressing two subproblems at once. We alternately

iterate the path generation and node sampling steps and this method reduces the

computational time by reducing the number of sampled nodes. In addition, we

propose the concept of an upstream distance when solving the TSP. This induces

more of the path to be aligned with a desired direction. Finally, we identify the

paint distribution model by means of SVR network and optimized the painting

parameters to achieve uniformity in the paint deposition. This machine learning

technique enabled us to accurately predict the paint distribution model as a func-

tion of the painting parameters. We demonstrated our algorithm on several types

of analytic surfaces and compared the results with those of conventional methods.

The overall results indicate that our algorithm requires less computation time and
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yields less upstream cost while achieving reasonable uniformity of the paint thick-

ness. However, it should be noted that our algorithm is not a perfect method. Be-

cause our methods adopt a sampling-based approach, it has a disadvantage that

the result varies with each simulation. We expect future improvements that resolve

this drawback.
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국문초록

본 논문에서는 2차원 표면의 균일 커버리지 경로 계획을 설명하고 이를 효율적

으로 푸는 알고리즘을 제시한다. 우리는 경로 계획 문제를 두 개의 하위 문제로

분리하여 각각 푸는 기존의 방식을 보완하여 두 개의 하위문제를 한 번에 풀면

서 계산시간을 줄이는 방법을 제시하였다. 또한 경우에 따라 주어진 벡터 필드와

나란한 방향으로 경로가 생성될 필요가 있는데 이를 위해 거스름 거리(upstream

distance)의 개념을 제시하였으며 여행 외판원 문제(Traveling Salesman Problem)

를 풀 때 이를 적용하였다. 우리는 차량 도장 응용분야에 균일 커버리지 경로 계

획법을 적용하였으며 도장 시스템을 고려하여 균일한 페인트 두께를 보장하는 방

법을 같이 제시하였다. 네 가지 타입의 2차원 곡면에 대해 시뮬레이션을 진행하

였으며 기존의 방법에 비해 더 적은 계산시간을 요구하면서도 합리적인 수준의

페인트 균일도를 달성함을 검증하였다.

주요어: 균일 커버리지 경로 계획, 스프레이 도장, 여행 외판원 문제, 거스름 척도,

서포트 벡터 회기법, 페인트 분포 모델

학번: 2018-24497
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