5 research outputs found

    ๋ชจ์„ธ๊ด€ ํ˜„ํƒ์•ก์˜ ์ž…์ž ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์œ„ํ•œ ๊ทผ์‚ฌ์  ์ ‘๊ทผ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2022. 8. ์•ˆ๊ฒฝํ˜„.๋ชจ์„ธ๊ด€ ํ˜„ํƒ์•ก์€ ํ•˜๋‚˜์˜ ๊ณ ์ฒด์™€ ๋‘๊ฐœ์˜ ์„ž์ด์ง€ ์•Š๋Š” ์œ ์ฒด๋“ค์„ ํฌํ•จํ•˜๋Š” 3์ƒ๊ณ„ ์‹œ์Šคํ…œ์ด๋‹ค. ๋‘ ์œ ์ฒด ์ค‘ ์†Œ๋Ÿ‰์œผ๋กœ ์ฒจ๊ฐ€๋˜๋Š” ์œ ์ฒด๋ฅผ 2์ฐจ ์œ ์ฒด๋ผ๊ณ  ํ•˜๋ฉฐ 2์ฐจ ์œ ์ฒด๊ฐ€ 1์ฐจ ์œ ์ฒด์— ๋ถ„์‚ฐ๋˜์–ด ์žˆ๋Š” ์ž…์ž๋“ค ์‚ฌ์ด์— ์œ„์น˜ํ•˜๋ฉฐ ์ƒ˜ํ”Œ-์ŠคํŒจ๋‹ ๊ตฌ์กฐ๋ฅผ ํ˜•์„ฑํ•˜๊ฒŒ ๋˜๊ณ , ์ด๋Š” ์œ ๋ณ€ ๋ฌผ์„ฑ์˜ ํฐ ๋ณ€ํ™”๋กœ ์ด์–ด์ง€๊ฒŒ ๋œ๋‹ค. ํ˜„์žฌ๊นŒ์ง€์˜ ๋ชจ์„ธ๊ด€ ํ˜„ํƒ์•ก์— ๋Œ€ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์—ฐ๊ตฌ๋Š” ๊ตญ์†Œ ์‘์ง‘์ฒด๋‚˜ ํ˜•ํƒœ์— ๋Œ€ํ•œ ์ž‘์€ ๊ทœ๋ชจ์˜ ๋ถ„์„์—๋งŒ ๊ตญํ•œ๋˜์–ด ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” 2์ฐจ ์œ ์ฒด์™€ ์ž…์ž ๊ฐ„์˜ ์ƒํ˜ธ ์ž‘์šฉ์„ ๊ทผ์‚ฌํ•˜๋Š” ์ž…์ž ์‹œ๋ฎฌ๋ ˆ์ด์…˜์œผ๋กœ ๋ชจ์„ธ๊ด€ ํ˜„ํƒ์•ก์„ ๋ฌ˜์‚ฌํ•˜๋Š” ๋ฐฉ์‹์ด ์ œ์•ˆ๋˜์—ˆ๊ณ , ์ด๋ฅผ ํ†ตํ•ด ํ๋ฆ„ ํ•˜์—์„œ์˜ ๋ชจ์„ธ๊ด€ ํ˜„ํƒ์•ก์˜ ๊ตฌ์กฐ์™€ ์œ ๋ณ€ ๋ฌผ์„ฑ์„ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ์‹ค์ œ ์ž์œ  ๊ณ„๋ฉด์„ ํ‘ธ๋Š” ๊ณผ์ •์— ํฌํ•จ๋˜๋Š” ๋‹ค์ˆ˜์˜ ํŽธ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹๋“ค๊ณผ ๊ณ„์‚ฐ์„ ์œ„ํ•ด ํ•„์š”ํ•œ ๋งŽ์€ ์–‘์˜ ๊ณ„์‚ฐ ์ž์›์œผ๋กœ ์ธํ•ด ๊ทผ์‚ฌ์  ์ ‘๊ทผ๋ฒ•์€ ๋ชจ์„ธ๊ด€ ํ˜„ํƒ์•ก์„ ์ž…์ž ์‹œ๋ฎฌ๋ ˆ์ด์…˜์œผ๋กœ ๊ตฌํ˜„ํ•˜๋Š” ๋ฐ ์žˆ์–ด์„œ ํ•„์ˆ˜์ ์ด๋‹ค. ๋‘ ์œ ์ฒด์˜ ์ž์œ  ๊ณ„๋ฉด์€ ๊ตฌํ˜•์œผ๋กœ ๊ฐ€์ •๋˜์—ˆ์œผ๋ฉฐ ๊ณ ์ฒด ํ‘œ๋ฉด์—์„œ ๋ถ€๋ถ„์ ์œผ๋กœ ๊ฒน์ณ์งˆ ์ˆ˜ ์žˆ๊ณ  ๋ถ€ํ”ผ๊ฐ€ ์ผ์ •ํ•˜๋‹ค๋Š” ๊ฐ€์ •์„ ์ ์šฉ์‹œ์ผฐ๋‹ค. ์ž…์ž๋ฅผ ์ด์–ด์ฃผ๋Š” 2์ฐจ ์œ ์ฒด ๋กœ๋ถ€ํ„ฐ ๊ธฐ์ธํ•˜๋Š” ๋ชจ์„ธ๊ด€๋ ฅ์€ ์ž…์ž์™€ 2์ฐจ ์œ ์ฒด ๊ฐ„ ๊ฑฐ๋ฆฌ๊ฐ€ ๋ณ€ํ•˜๋ฉฐ ์ƒ๊ธฐ๋Š” ํ‘œ๋ฉด ์—๋„ˆ์ง€์˜ ์ฐจ์ด๋ฅผ ๊ณ ๋ คํ•จ์œผ๋กœ์จ ๋ฌ˜์‚ฌ๋˜์—ˆ๋‹ค. 2์ฐจ ์œ ์ฒด๊ฐ€ ์ž…์ž์™€ ๋งŒ๋‚ฌ์„ ๋•Œ 2์ฐจ ์œ ์ฒด์˜ ๋ถ€ํ”ผ ์œ ์ง€๋ฅผ ์œ„ํ•ด ๋ฐ˜๊ฒฝ์ด ์ปค์ง€๊ฒŒ ๋˜๋ฉฐ 2์ฐจ ์œ ์ฒด๊ฐ€ ์ž…์ž์™€ ๋–จ์–ด์งˆ ๋•Œ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋ฌ˜์‚ฌ๋œ๋‹ค. ํ‘œ๋ฉด์ ์˜ ๋ณ€ํ™”๋Š” ํ‘œ๋ฉด ์—๋„ˆ์ง€์˜ ๋ณ€ํ™”๋กœ ์ด์–ด์ง€๊ฒŒ ๋˜๋ฉฐ ์ž…์ž ๊ฐ„ ์ž‘์šฉํ•˜๋Š” ํž˜์€ ์ด ํ‘œ๋ฉด ์—๋„ˆ์ง€๋ฅผ ์ตœ์†Œํ™” ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ž‘์šฉ๋œ๋‹ค. ์ด ๋ฐฉ๋ฒ•๋ก ์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์กฐ๊ฑด์—์„œ ๋ชจ์„ธ๊ด€ ํ˜„ํƒ์•ก์˜ ํ˜•์„ฑ์ด ์‹คํ—˜๋˜์—ˆ์Œ๋ฉฐ ์ƒ˜ํ”Œ-์ŠคํŒจ๋‹ ๊ตฌ์กฐ๊ฐ€ ์–ป์–ด์กŒ๋‹ค. ์ด ๋•Œ ๋ชจ์„ธ๊ด€ ํ˜„ํƒ์•ก์˜ ๊ตฌ์กฐ์™€ ๋ชจ์„ธ๊ด€๋ ฅ์„ ๊ฒฐ์ •์ง“๋Š” ํŠน์„ฑ ๋ณ€์ˆ˜๋“ค๋กœ๋Š” ์ž…์ž์˜ ๋ถ€ํ”ผ๋ถ„์œจ(ฯ•p), 2์ฐจ ์œ ์ฒด์˜ ๋ถ€ํ”ผ๋ถ„์œจ(ฯ•f), 3์ƒ ์ ‘์ด‰๊ฐ(ฮธ), 2์ฐจ ์œ ์ฒด์™€ ๊ณ ์ฒด ๊ฐ„์˜ ํฌ๊ธฐ๋น„(ฮบ)๊ฐ€ ์žˆ๋‹ค. ๊ฐ๊ฐ์˜ ํŠน์„ฑ ๋ณ€์ˆ˜๊ฐ€ ๋ชจ์„ธ๊ด€ ํ˜„ํƒ์•ก์˜ ํ˜•์„ฑ๊ณผ ๊ตฌ์กฐ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ๋“ค์€ ์‘์ง‘์ฒด ํฌ๊ธฐ ๋ถ„์„, ๋ณธ๋“œ ๋„˜๋ฒ„ ๋ถ„์„, ์œ ๋ณ€ ๋ฌผ์„ฑ์„ ํ†ตํ•ด ์กฐ์‚ฌ๋˜์—ˆ๊ณ , ๋‹ค์–‘ํ•œ ์กฐ๊ฑด์˜ ๋ฏน์‹ฑ ํ”„๋กœํ† ์ฝœ์˜ ์˜ํ–ฅ ๋˜ํ•œ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค. ํŠน์„ฑ ๋ณ€์ˆ˜๋“ค์˜ ์ตœ์ ๊ฐ’์„ ๊ฐ€์ง€๊ณ  25 vol%์˜ ์ž…์ž ๋ถ€ํ”ผ๋ถ„์œจ, 2 vol%์˜ 2์ฐจ ์œ ์ฒด ๋ถ€ํ”ผ๋ถ„์œจ, 92๋„์˜ 3์ƒ ์ ‘์ด‰๊ฐ, 0.4์˜ 2์ฐจ ์œ ์ฒด์™€ ๊ณ ์ฒด ๊ฐ„์˜ ํฌ๊ธฐ ๋น„๋ฅผ ๊ฐ€์ง€๋Š” ๋ชจ๋ธ ๋ชจ์„ธ๊ด€ ํ˜„ํƒ์•ก์„ ํ˜•์„ฑํ•˜์˜€๊ณ , ์ด ๋ชจ๋ธ ๋ชจ์„ธ๊ด€ ํ˜„ํƒ์•ก์˜ ๊ตฌ์กฐ ๋ฐ ํ๋ฆ„ ํŠน์„ฑ์ด ์กฐ์‚ฌ๋˜์—ˆ๋‹ค. ๋ณด๋‹ค ๋” ์ •ํ™•ํ•œ ์œ ๋ณ€ ๋ฌผ์„ฑ ์ธก์ •์„ ์œ„ํ•ด 10,000๊ฐœ์˜ ์ž…์ž์™€ ๋ถ€ํ”ผ ๋ถ„์œจ๊ณผ ํฌ๊ธฐ๋น„์— ์ƒ์‘ํ•˜๋Š” ๊ฐœ์ˆ˜์˜ 2์ฐจ ์œ ์ฒด๊ฐ€ ๋“ค์–ด๊ฐ”๋‹ค. 2์ฐจ ์œ ์ฒด ๋ถ€ํ”ผ ๋ถ„์œจ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ €์ „๋‹จ ์ ๋„์˜ ๊ฒฝํ–ฅ์„ฑ์€ ์‹คํ—˜์—์„œ ์ €์ „๋‹จ ์ ๋„๊ฐ€ 2์ฐจ ์œ ์ฒด ๋ถ€ํ”ผ ๋ถ„์œจ์— ๋Œ€ํ•ด ๊ฐ€์ง€๋Š” ์˜์กด์„ฑ๊ณผ ๋น„์Šทํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋ ˆ์ž‡ ์Šค์œ• ๋ถ„์„์„ ํ†ตํ•ด ๋ชจ์„ธ๊ด€ ํ˜„ํƒ์•ก์ด ๊ฐ•ํ•œ ์ „๋‹จ ๋ฐ•ํ™”๋ฅผ ๋ณด์—ฌ์คŒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ๋‚ฎ์€ ์ „๋‹จ ์†๋„์˜ ์˜์—ญ์—์„œ๋Š” ๊ตญ์†Œ ๋™๊ฒฐ๋กœ ์ธํ•ด ์ „๋‹จ ์‘๋ ฅ์˜ ๊ธ‰๊ฒฉํ•œ ๊ฒฝ์‚ฌ ๋ณ€ํ™”๊ฐ€ ์ผ์–ด๋‚˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ฌด์ฐจ์› ์ „๋‹จ ์†๋„๊ฐ€ 0.5๋ณด๋‹ค ๋‚ฎ์„ ๋•Œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์˜ ํ๋ฆ„ ํŠน์„ฑ๋“ค์€ ๊ตญ์†Œ ๋™๊ฒฐ์˜ ์ง•ํ›„๋ฅผ ๋ณด์˜€๊ณ  ๋ฆฌ์ฆˆ-์—๋“œ์›Œ์ฆˆ ๊ฒฝ๊ณ„ ์กฐ๊ฑด์œผ๋กœ ์ธํ•ด ๋‚˜ํƒ€๋‚˜๋Š” ๊ตญ์†Œ ๋™๊ฒฐ์€ ์žฌ์–ด์ง„ ์ ๋„๋‚˜ ์‘๋ ฅ์— ๋ฐ˜์˜๋˜์ง€ ์•Š์•˜๋‹ค. ๋”ฐ๋ผ์„œ, ๋™๊ฒฐ๋œ ๋ถ€๋ถ„์˜ ๊ตญ์†Œ ๋ฌผ์„ฑ๋“ค์€ ์ „์ฒด์ ์ธ ๋ฌผ์„ฑ๋“ค๊ณผ ๋ถ„๋ฆฌ๋˜์–ด ๋”ฐ๋กœ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค. ๊ตญ์†Œ ๋ฌผ์„ฑ๋“ค์€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์˜์—ญ์„ y ๋ฐฉํ–ฅ์œผ๋กœ ์ž˜๊ฒŒ ๋‚˜๋ˆˆ ํ›„ ๊ฐ๊ฐ์˜ ๊ตฌํš์—์„œ ์ธก์ •ํ•œ ์ž…์ž์˜ ์†๋„์™€ ์‘๋ ฅ์„ ํ†ตํ•ด ์ธก์ •๋˜์—ˆ๋‹ค. ๊ตญ์†Œ ๋™๊ฒฐ์ด ์ผ์–ด๋‚˜๋Š” ๋ถ€๋ถ„์—์„œ ๊ตญ์†Œ ์‘๋ ฅ์€ ๊ตญ์†Œ ๋ณ€ํ˜•๊ณผ ๋น„๋ก€ํ•˜๊ฒŒ ์ฆ๊ฐ€ํ•˜๋Š” ์–‘์ƒ์„ ๋ณด์˜€์œผ๋ฉฐ ์ด๋Š” ํƒ„์„ฑ์˜ ๋ฐœํ˜„์œผ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” ๋ฌผ์งˆ์ด ์ฃผ์–ด์ง„ ๋ณ€ํ˜•์— ์ €ํ•ญํ•˜์—ฌ ๊ตฌ์กฐ๋ฅผ ์œ ์ง€ํ•˜๋ ค๋Š” ๊ฒƒ์„ ๋‚˜ํƒ€๋‚ด๊ณ  ์ฃผ์–ด์ง„ ๋ณ€ํ˜•๊ณผ ๊ด€์ฐฐ๋˜๋Š” ๋ณ€ํ˜• ๊ฐ„์˜ ์ฐจ์ด๋Š” ํ•ญ๋ณต ์‘๋ ฅ์˜ ์˜ํ–ฅ์œผ๋กœ ํ•ด์„๋  ์ˆ˜ ์žˆ๋‹ค. ๋‹ค๋ฅธ ์ „๋‹จ ์†๋„์—์„œ๋„ ๊ตญ์†Œ ๋™๊ฒฐ์ด ๋ฐœ์ƒํ•˜๋Š” ์ „๋‹จ ์†๋„์— ํ•œํ•˜์—ฌ ๊ตญ์†Œ ๋ฌผ์„ฑ ๋ถ„์„์ด ์ด๋ฃจ์–ด์กŒ์œผ๋ฉฐ, ํƒ„์„ฑ์ด ์‚ฌ๋ผ์ง€๋Š” ์‘๋ ฅ์˜ ๊ฐ’์ด ์ธก์ •๋˜์—ˆ๋‹ค. ์ด ํ•ญ๋ณต ์‘๋ ฅ์€ ๋ฌด์ฐจ์› ํ˜•ํƒœ๋กœ 5.7์˜ ๊ฐ’์„ ๊ฐ€์ง€๋Š” ๊ฒƒ์œผ๋กœ ๊ณ„์‚ฐ๋˜์—ˆ๊ณ , ์ด๋Š” ์ด์ „ ์—ฐ๊ตฌ์—์„œ ๋ณด๊ณ ๋œ ๊ฐ’๋“ค๊ณผ ์œ ์‚ฌํ•จ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ง„๋™ ํ๋ฆ„ ํ•˜์—์„œ ์ง„ํญ ์Šค์œ• ์‹คํ—˜์ด ์ด๋ฃจ์–ด์กŒ์œผ๋ฉฐ 0.1์˜ ๋ณ€ํ˜•์—์„œ ๋ณ€ํ˜• ๋†ํ™”๊ฐ€ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ์ง„ํญ ์Šค์œ• ๊ฒฐ๊ณผ๋Š” ์‹œํ€€์Šค ์˜ค๋ธŒ ํ”ผ์ง€์ปฌ ํ”„๋กœ์„ธ์Šค ๋ฐฉ์‹์„ ํ†ตํ•ด ๋ถ„์„๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ทผ์‚ฌ์  ์ ‘๊ทผ๋ฒ•์„ ํฌํ•จํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•จ์œผ๋กœ์จ ๋ชจ์„ธ๊ด€ ํ˜„ํƒ์•ก์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์œผ๋กœ ๋ฌ˜์‚ฌํ•˜๊ณ ์ž ํ•˜์˜€์œผ๋ฉฐ ๋ชจ์„ธ๊ด€ ํ˜„ํƒ์•ก์˜ ์ฃผ์š” ํŠน์„ฑ๋“ค์„ ์„ฑ๊ณต์ ์œผ๋กœ ์žฌํ˜„ํ•ด๋‚ด์—ˆ๋‹ค.A capillary suspension is a ternary system consisting of one solid and two immiscible liquids. As a small amount of one of the fluids, also known as the secondary fluid, is present in between the particles to form a sample-spanning network, the suspension experiences dramatic changes in the rheological properties. Previously, the simulation studies of the capillary suspension were limited to small scaled analyses of the local cluster and morphology. In this paper, a particle simulation on the capillary suspension is proposed by introducing the coarse-grained interaction between fluid droplets and solid particles and investigate the structure and rheological properties of the capillary suspension during flow. Due to the difficulties associated with solving the actual free surface including multiple partial differential equations and an excessive amount of computing resources, coarse-graining is inevitable to investigate the structural and rheological properties of the capillary suspension through a particle simulation. The shape of the free surface between two fluid phases is simplified and assumed as a sphere, which can be partially superposed on the solid surface, while the volume occupied by the fluid droplet is preserved. The capillary force exerted by the secondary fluid droplets connecting the particles is described by considering the surface energy difference when the distance between the particle and the secondary fluid droplet changes. The secondary fluid droplet, upon contact with a particle, goes through a radius change to preserve its volume that is superposed by the particle volume, and vice versa. The surface area change causes the surface energy difference, and the inter-particle force is described to minimize the surface energy. By using the method, the formation of the capillary suspension is simulated under various conditions to achieve a sample-spanning network. The characteristic variables that determine the strength and morphology of the capillary suspension are particle volume fraction(ฯ•p), secondary fluid volume fraction(ฯ•f), the three-phase contact angle(ฮธ), and the size of the secondary fluid droplets(ฮบ). The effect of the characteristic variables on the formation and structure of the capillary suspension is investigated using various tools including cluster size analysis, bond number analysis, and rheological properties. In addition, various modes of mixing protocol were compared. After the optimal values for the characteristic variables to describe the capillary suspension the best are determined, the structure and flow properties of the capillary suspension are investigated at the size ratio of 0.4, the three-phase contact angle of 92 degrees, and particle and secondary fluid concentration of 25 vol% and 2 vol%, respectively. To measure the rheological properties accurately, the number of the particles was fixed at 10,000 and the number of the secondary fluid droplets vary according to the secondary fluid volume fraction and the size ratio. The low shear rate viscosity was analyzed with varying the secondary fluid volume fraction and showed that the viscosity dependency on the secondary fluid volume fraction is similar to what was measured in the experiment. Through the rate sweep analysis, the capillary suspension is found to exhibit a strong shear thinning behavior and a sudden slope change of the shear stress at low shear rate regime due to the local freezing. Under low dimensionless shear rates less than 0.5, the simulated flow properties show a sign of local freezing, and the viscosity and stress measured in bulk do not reflect the local freezing due to the Lees-Edwards boundary condition. Therefore, the local properties of the frozen zone are isolated from the bulk properties and further investigated. The local properties are measured by dividing the simulation window into pieces in the y-direction and measuring the particle velocity and stress at each segment. The local stress increases linearly with the local strain in the frozen zone, exhibiting an elastic behavior. This indicates that the material preserves its structure over the imposed strain, and the difference between imposed and apparent strain is interpreted as the effect of yield stress. At different shear rates, the local properties of the frozen zones are measured and compared to find out the stress at which the elastic behavior vanishes. Finally, the yield stress is calculated as 5.7 in dimensionless form, similar to that reported in previous studies. Under an oscillatory flow, an amplitude sweep test was performed and the results demonstrated a strain thickening at 0.1 strain. The amplitude sweep data were analyzed with Sequence of Physical Process. This study attempted to describe the capillary suspension through a simulation by suggesting a methodology involving a coarse-grained approach and successfully reproduced some key characteristics of the capillary suspension.1 Introduction 1 1.1 Capillary suspension 2 1.2 Solving the free interface 9 1.3 Yield stress 12 1.4 Oscillatory shear 14 1.5 Thesis outline 16 2 Methodology 17 2.1 Capillary interaction 19 2.2 Droplet friction on the particle surface 29 2.3 Core-repulsion and hydrodynamic friction 31 2.4 Evolution of particle and droplet positions under shear flow 34 2.5 Simulation condition and analysis method 36 2.6 Experimental 43 3 Results 46 3.1 Effect of characteristic variables 46 3.1.1 Effect of ฮธc 47 3.1.2 Effect of ฮบ and f 51 3.1.3 Effect of p 59 3.1.4 Effect of polydispersity in ฮบ 62 3.2 Structure evaluation 67 3.2.1 Effect of mixing protocol 67 3.2.2 Sample-spanning network 71 3.3 Flow properties of model capillary suspension 74 3.3.1 Flow curve 74 3.3.2 Yielding 76 3.3.3 Oscillatory shear flow behavior 85 4 Conculsion 91 4.1 Concluding remarks 91 4.2 Conclusion 96 A Formulation 102 ์ดˆ๋ก 109๋ฐ•

    ๋ฏธ๋‹ˆ์Šคํฌ๋ฅ˜ ์ž„ํ”Œ๋ž€ํŠธ ์‹๋ฆฝ์„ ์œ„ํ•œ ์ƒ์•… ์ „์น˜๋ถ€ ์น˜์กฐ๊ณจ์— ๋Œ€ํ•œ CBCT ํ‰๊ฐ€

    No full text
    ์น˜์˜ํ•™๊ณผ/์„์‚ฌ์ Š์€ ์—ฌ์„ฑํ™˜์ž์˜ ์ฆ๊ฐ€๋กœ ์•„๋ฆ„๋‹ค์šด smile line์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ gummy smile์˜ ํ•ด๊ฒฐ์„ ์œ„ํ•œ ์ƒ์•… ์ „์น˜๋ถ€์˜ ํ•จ์ž…์น˜๋ฃŒ๋Š” ๊ต์ •์˜์—ญ์—์„œ ์ค‘์š”ํ•œ ์ˆ ์‹์ด ๋˜์—ˆ๋‹ค. ์ƒ์•… ์ „์น˜๋ถ€ ์น˜๊ทผ์‚ฌ์ด์— ๋ฏธ๋‹ˆ์Šคํฌ๋ฅ˜ ์ž„ํ”Œ๋ž€ํŠธ๋ฅผ ์‹๋ฆฝํ•˜์—ฌ ์ง์ ‘ ํ•จ์ž…๋ ฅ์„ ์ ์šฉํ•˜๋ฉด ๋‹ค๋ฅธ ๋ถ€์ž‘์šฉ์„ ์ตœ์†Œํ™”ํ•˜๋ฉด์„œ ์ข‹์€ ์น˜๋ฃŒ ๊ฒฐ๊ณผ๋ฅผ ๋งŒ๋“ค์–ด ๋‚ผ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ต์ •์น˜๋ฃŒ ๋ฐฉ๋ฒ•์€ ์ž„์ƒ์ ์œผ๋กœ ๋งŽ์ด ํ™œ์šฉ๋˜๊ณ  ์žˆ์ง€๋งŒ ๋ฏธ๋‹ˆ์Šคํฌ๋ฅ˜ ์ž„ํ”Œ๋ž€ํŠธ ์‹๋ฆฝ์œ„์น˜์ธ ์ƒ์•… ์ „์น˜๋ถ€์˜ ์น˜๊ทผ์‚ฌ์ด ์น˜์กฐ๊ณจ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋ฏธ๋ฏธํ•œ ์‹ค์ •์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” CBCT๋ฅผ ์ด์šฉํ•˜์—ฌ ์ƒ์•… ์ „์น˜๋ถ€ ์น˜๊ทผ์‚ฌ์ด ์น˜์กฐ๊ณจ์„ 3์ฐจ์›์ ์œผ๋กœ ๋ถ„์„ํ•˜์—ฌ ๋ฏธ๋‹ˆ์Šคํฌ๋ฅ˜ ์ž„ํ”Œ๋ž€ํŠธ ์‹๋ฆฝ์„ ์œ„ํ•œ ์ž„์ƒ์ ์ธ ๊ฐ€์ด๋“œ๋ผ์ธ์„ ์ œ๊ณตํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์„ฑ์ธํ™˜์ž 52๋ช…์˜ CBCT ์ž๋ฃŒ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ƒ์•…์ค‘์ ˆ์น˜์‚ฌ์ด(U1-U1), ์ƒ์•…์ค‘์ ˆ์น˜์™€ ์ธก์ ˆ์น˜์‚ฌ์ด(U1-U2), ์ƒ์•…์ธก์ ˆ์น˜์™€ ๊ฒฌ์น˜์‚ฌ์ด(U2-U3)์˜ ์น˜๊ทผ๋ถ€์œ„์—์„œ ํ”ผ์งˆ๊ณจ ๋‘๊ป˜, ์ˆœ์„ค์ธก ๋‘๊ป˜, ์น˜๊ทผ์‚ฌ์ด ๊ฑฐ๋ฆฌ๋ฅผ ๊ณ„์ธกํ•˜์˜€๊ณ , ์ „ํ›„๋ฐฉ์  ๊ณจ๊ฒฉ์ƒํƒœ, ์ˆ˜์ง์  ๊ณจ๊ฒฉ์ƒํƒœ์— ๋”ฐ๋ผ ๋ถ„๋ฅ˜ํ•˜๊ณ  ๋น„๊ต ๋ถ„์„ํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๋ก ์„ ์–ป์—ˆ๋‹ค.1.ํ”ผ์งˆ๊ณจ ๋‘๊ป˜๋Š” ์ค‘์ ˆ์น˜์‚ฌ์ด์—์„œ ์ธก์ ˆ์น˜์™€ ๊ฒฌ์น˜์‚ฌ์ด๋กœ ๊ฐˆ์ˆ˜๋ก ์œ ์˜์„ฑ ์žˆ๊ฒŒ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค(P<0.05). U1-U1, U2-U3์—์„œ CEJ ์ƒ๋ฐฉ์œผ๋กœ ๊ฐˆ์ˆ˜๋ก ๋‘๊บผ์›Œ์ง€๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๊ณ , CEJ 4mm ์™€ 8mm ๊ฐ„์— ์œ ์˜์„ฑ ์žˆ๋Š” ์ฐจ์ด๋ฅผ ๋ณด์˜€๋‹ค(p<0.05). 2.์ˆœ์„ค์ธก ๋‘๊ป˜๋Š” U1-U1์‚ฌ์ด๊ฐ€ ์œ ์˜์„ฑ ์žˆ๊ฒŒ ๊ฐ€์žฅ ์–‡์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค(p<0.05).U1-U1์‚ฌ์ด๋Š” CEJ ์ƒ๋ฐฉ์œผ๋กœ ๊ฐˆ์ˆ˜๋ก ๊ฐ์†Œ๋˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๊ณ , CEJ 4mm์™€ 8mm๊ฐ„์—๋Š” ์œ ์˜์„ฑ ์žˆ๋Š” ๋‘๊ป˜ ์ฐจ์ด๋ฅผ ๋ณด์˜€๋‹ค(p<0.05).3.์น˜๊ทผ์‚ฌ์ด ๊ฑฐ๋ฆฌ๋Š” U1-U2์‚ฌ์ด๊ฐ€ ์œ ์˜์„ฑ ์žˆ๊ฒŒ ๊ฐ€์žฅ ์ข์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค(p<0.05). ๋ชจ๋“  ์ธก์ •๋ถ€์œ„์—์„œCEJ ์ƒ๋ฐฉ์œผ๋กœ ์˜ฌ๋ผ๊ฐˆ์ˆ˜๋ก ์น˜๊ทผ์‚ฌ์ด ๊ฑฐ๋ฆฌ๋Š” ์œ ์˜์„ฑ ์žˆ๊ฒŒ ๋„“์–ด์ง€๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค(p<0.05).4.์ „ํ›„๋ฐฉ์  ๊ณจ๊ฒฉ์ƒํƒœ์— ๋”ฐ๋ผ ๋ถ„์„ํ•ด ๋ณธ ๊ฒฐ๊ณผ U1-U1์‚ฌ์ด์˜ CEJ 6mm์—์„œ ๊ณจ๊ฒฉ์„ฑ Clโ… ์ด ํ”ผ์งˆ๊ณจ ๋‘๊ป˜๊ฐ€ ์œ ์˜์„ฑ ์žˆ๊ฒŒ ๋‘๊บผ์šด ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค(p<0.05).์ˆœ์„ค์ธก ๋‘๊ป˜, ์น˜๊ทผ์‚ฌ์ด ๊ฑฐ๋ฆฌ์— ์žˆ์–ด์„œ๋Š” ์œ ์˜์„ฑ ์žˆ๋Š” ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค.5.์ˆ˜์ง์  ๊ณจ๊ฒฉ์ƒํƒœ์— ๋”ฐ๋ผ ๋ถ„์„ํ•ด ๋ณธ ๊ฒฐ๊ณผ ์žฅ์•ˆ๋ชจ๊ตฐ๊ณผ ์ •์ƒ์•ˆ๋ชจ๊ตฐ์ด ํ”ผ์งˆ๊ณจ ๋‘๊ป˜, ์ˆœ์„ค์ธก ๋‘๊ป˜์—์„œ ์œ ์˜์„ฑ ์žˆ๋Š” ์ฐจ์ด๋Š” ์—†์—ˆ๋‹ค.์น˜๊ทผ์‚ฌ์ด ๊ฑฐ๋ฆฌ์—์„œ๋„ U1-U2์‚ฌ์ด์˜ CEJ 6mm์™ธ์—๋Š” ์œ ์˜์„ฑ ์žˆ๋Š” ์ฐจ์ด๋Š” ์—†์—ˆ๋‹ค(p<0.05).ope

    ์•„ํ† ํ”ผ ํ”ผ๋ถ€์—ผ ๋ฐœ๋ณ‘์—์„œ์˜ JNK1์˜ ์—ญํ• ๊ณผ JNK1 ์–ต์ œ๋Šฅ์„ ๊ฐ–๋Š” ์‹๋ฌผ์œ ๋ž˜ํ™”ํ•ฉ๋ฌผ์˜ ํšจ๋Šฅ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์ƒ๋ช…๊ณตํ•™๋ถ€, 2013. 8. ์ด๊ธฐ์›.์•„ํ† ํ”ผํ”ผ๋ถ€์—ผ์€ ์Šต์ง„์„ฑ ํ”ผ๋ถ€ ๋ณ‘๋ณ€๊ณผ ํ˜ˆ์•ก ๋‚ด ๋†’์€ ์ด๋ฎค๋…ธ๊ธ€๋กœ๋ธ”๋ฆฐ ์ˆ˜์น˜๋ฅผ ๊ฐ–๊ฒŒํ•˜๋Š” ๋งŒ์„ฑ ์—ผ์ฆ์„ฑ ํ”ผ๋ถ€ ์งˆํ™˜์ด๋‹ค. ์ตœ๊ทผ ์•Œ๋ ˆ๋ฅด๊ธฐ ์งˆํ™˜์˜ ๊ธ‰์ฆ์œผ๋กœ ์ „์„ธ๊ณ„์ ์œผ๋กœ ๋งค๋…„ ์•„ํ† ํ”ผํ”ผ๋ถ€์—ผ ํ™˜์ž๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ์–ด, ๊ฒฝ์ œ์ , ์‚ฌํšŒ์ ์œผ๋กœ๋„ ํฐ ๋ฌธ์ œ๊ฐ€ ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ์‚ฐํ™” ํšจ์†Œ์˜ ํ•˜๋‚˜์ธ JNK1์˜ ์•„ํ† ํ”ผ ํ”ผ๋ถ€์—ผ ๋ฐœ๋ณ‘์— ์žˆ์–ด์„œ์˜ ๊ธฐ๋Šฅ๊ณผ JNK1 ์–ต์ œ ํšจ๋Šฅ์„ ๊ฐ€์ง€๋Š” ์ฒœ์—ฐ์‹๋ฌผ ์œ ๋ž˜ ๋ฌผ์งˆ์˜ ํ•ญ์•„ํ† ํ”ผํ”ผ๋ถ€์—ผ ํšจ๋Šฅ์— ๋Œ€ํ•ด ๊ทœ๋ช…ํ•˜์˜€๋‹ค. ์ •์ƒ์ƒ์ฅ์™€ JNK1 ์œ ์ „์ž๊ฐ€ ์†Œ์‹ค๋œ ์ƒ์ฅ์˜ ๊ท€์— ๋น„ํƒ€๋ฏผ ๋”” ์œ ๋„์ฒด์ธ MC903์„ ๋ฐœ๋ผ ์•„ํ† ํ”ผ๋ฅผ ์œ ๋„ํ•˜์˜€๋‹ค. ์•„ํ† ํ”ผ์˜ ์ฆ์ƒ์œผ๋กœ์„œ ๊ท€ ๋‘๊ป˜์˜ ์ฆ๊ฐ€ ์ •๋„๋ฅผ ์ธก์ •ํ•˜์˜€๊ณ , ๋ฉด์—ญ์„ธํฌ์˜ ์นจ์œค, ํ˜ˆ์ค‘ IgE, Th1๊ณผ Th2 ์„ธํฌ ๊ด€๋ จ ์‹ธ์ดํ† ์นด์ธ์˜ ์–‘์„ ์ธก์ •ํ•˜์˜€๋‹ค. ๋˜ํ•œ, T์„ธํฌ ์ „์‚ฌ์ธ์ž์ธ GATA-3์™€ T-bet์˜ ๋‹จ๋ฐฑ์งˆ ์–‘์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์ •์ƒ์ƒ์ฅ์— ๋น„ํ•ด JNK1์ด ์†Œ์‹ค๋œ ์ƒ์ฅ์—์„œ ์—ฌ๋Ÿฌ ์•„ํ† ํ”ผํ”ผ๋ถ€์—ผ ๊ด€๋ จ ์ฆ์ƒ๋“ค์ด ์–ต์ œ๋จ์„ ํ™•์ธํ•˜์˜€๊ณ  JNK1์ด ์•„ํ† ํ”ผํ”ผ๋ถ€์—ผ ๋ฐœ๋ณ‘์— ์žˆ์–ด ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค๋Š” ๊ฒฐ๋ก ์„ ์–ป์—ˆ๋‹ค. ๋” ๋‚˜์•„๊ฐ€ ์ฒœ์—ฐ์‹๋ฌผ ์œ ๋ž˜ ๋ฌผ์งˆ์ธ ๋ฃจํ…Œ์˜ฌ๋ฆฐ๊ณผ ๋ฆฌ์ฝ”์ฐฐ์ฝ˜์—์ด๋ฅผ ์ฒ˜๋ฆฌ ํ›„ ์•„ํ† ํ”ผํ”ผ๋ถ€์—ผ์„ ์œ ๋„ํ•œ ๊ฒฐ๊ณผ ๋ฌผ์งˆ ์ฒ˜๋ฆฌ๊ตฐ์—์„œ ๊ท€ ๋‘๊ป˜๊ฐ€ ๋œ ์ฆ๊ฐ€๋˜๊ณ , ํ˜ˆ์ค‘ IgE์–‘์ด ์–ต์ œ๋จ์„ ๊ด€์ฐฐํ•˜์—ฌ, ์ด ๋‘ ๋ฌผ์งˆ์ด ๋ชจ๋‘ ์•„ํ† ํ”ผํ”ผ๋ถ€์—ผ ์˜ˆ๋ฐฉ ํšจ๋Šฅ์ด ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ, JNK1์€ ์•„ํ† ํ”ผํ”ผ๋ถ€์—ผ ๋ฐœ๋ณ‘์— ์žˆ์–ด ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ์˜ˆ๋ฐฉํ•˜๊ธฐ ์œ„ํ•œ ์‹์˜์•ฝํ’ˆ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์— ์žˆ์–ด ์œ ์šฉํ•œ ํƒ€๊ฒŸ์ด ๋  ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ ์ฃผ์—ˆ๋‹ค.Atopic dermatitis (AD) is a common allergic disease, imposing large social and economic burdens worldwide. AD is characterized by eczematous skin lesions and immunoglobulin E (IgE) hypersecretion. I investigated the role of c-Jun N-terminal kinase 1 (JNK1) and the effect of JNK1-inhibiting phytochemicals on the development of AD in mice. The vitamin D3 analogue MC903 was used to induce AD in wild-type (WT) and JNK1โˆ’/โˆ’ mice. The symptoms of AD were less severe in JNK1โˆ’/โˆ’ mice compared to WT mice. JNK1โˆ’/โˆ’ mice showed less ear thickening and infiltration of eosinophils and mast cells in AD-like lesions than did WT mice when treated with MC903. MC903-treated JNK1โˆ’/โˆ’ mice also showed lower levels of serum IgE, which was significantly elevated in MC903-treated WT mice. Splenocytes isolated from MC903-treated WT and JNK1โˆ’/โˆ’ mice were stimulated with anti-CD3 and anti-CD28 monoclonal antibodies. Splenocytes from JNK1โˆ’/โˆ’ mice produced lower levels of T-helper (Th)2 cytokines (interleukin-4 and -13) and transcription factor GATA-binding protein 3, and produced increased levels of the Th1 cytokines interferon-g and transcription factor T-box expressed in T cells. The JNK1-inhibiting phytochemicals luteolin and licochalcone A prevented MC903-induced ear thickening and the increase in serum IgE, suggesting that these compounds could prevent the development of AD. Our results indicate that JNK1 plays an important role in the pathogenesis of AD and may be a useful target for food-based therapies to prevent AD.Abstract โ…ฑ Contents โ…ณ โ… . Introduction 1 โ…ก. Materials and methods 4 2.1. Animal 4 2.2. Topical application 4 2.3. Blood and tissue sampling 5 2.4. Histological examination 5 2.5. Measurement of ear thickness 6 2.6. Determination of total serum IgE 6 2.7. Th1 and Th2 cytokine production in splenocytes 7 2.8. Western blot analysis 8 2.9. Statistical analysis 9 โ…ข. Result 10 3.1. The severity of MC903-induced AD-like symptoms was lower in JNK1-/- mice 10 3.2. MC903-induced infiltration of eosinophils and mast cells inAD-like lesion was reduced in JNK1-/- mice 11 3.3. The level of serum IgE was reduced in JNK1-/- mice 13 3.4. The level of IL-4, IL-13, and IFN-g were altered in JNK1-/-splenocytes 13 3.5. Level of the immunomodulatory transcription factors GATA-3 and T-bet were altered in JNK1-/- splenocytes 14 3.6. The JNK1 inhibiting phytochemicals luteolin and licochalconeA prevented development AD-like symtoms 15 โ…ฃ. Discussion 29 โ…ค. References 35 โ…ฅ. ๊ตญ๋ฌธ ์ดˆ๋ก 41Maste
    corecore