5 research outputs found

    Aerodynamic characteristics of a transitional insect flight using multigrid

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :기계항곡곡학뢀,2007.Maste

    λŒ€μ‹¬λ„ ν„°λ„μ—μ„œ μš΄ν–‰λ˜λŠ” κ³ μ†μ—΄μ°¨μ˜ 곡λ ₯νŠΉμ„± 및 μ² λ„μ°¨λŸ‰ μ•ˆμ „κΈ°μ€€μ„ μ μš©ν•œ 뢄석

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 기계항곡곡학뢀, 2014. 8. κΉ€κ·œν™.κ΅­λ‚΄μ—μ„œ μƒˆλ‘œμš΄ λŒ€μ€‘ κ΅ν†΅μˆ˜λ‹¨μ΄ 건섀될 κ³„νšμ— μžˆλ‹€. λŒ€μ‹¬λ„ 급행철도 (Great Train eXpress) λŠ” ν˜„μž¬μ˜ μ§€ν•˜μ² κ³Ό 같이 μ§€ν•˜μ— 건섀될 것이닀. κ·ΈλŸ¬λ‚˜ μ΅œλŒ€ 주행속도가 ν˜„μž¬μ˜ μ§€ν•˜μ² λ³΄λ‹€ μ•½ 2 λ°° λΉ λ₯Έ 200 km/h 이닀. μ—΄μ°¨μ˜ 속λ ₯이 ν„°λ„μ—μ„œ 증가할 λ•Œ, 곡기역학과 κ΄€λ ¨λœ λ¬Έμ œλ“€μ΄ μ£Όμš”κ΄€μ‹¬μ‚¬λ“€ 쀑에 ν•˜λ‚˜κ°€ λœλ‹€. 곡λ ₯λ¬Έμ œλ“€μ„ 예둜 λ“€λ©΄ 곡λ ₯ μ €ν•­, μŠ€ν¬λ¦°λ„μ–΄μ— μž‘μš©ν•˜λŠ” 풍압과 μŠΉκ°μ„ μœ„ν•œ 이λͺ…감 등을 λ“€ 수 μžˆλ‹€. κ·ΈλŸ¬λ―€λ‘œ λ³Έ λ…Όλ¬Έμ—μ„œλŠ” μ§€ν•˜μ²  ν„°λ„μ—μ„œμ˜ 곡λ ₯ν˜„μƒ 뢄석과 GTX의 κ°œλ…μ„€κ³„λ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€. μš°μ„ , ν˜„μž¬ μ§€ν•˜μ²  속도 (100 km/h)μ—μ„œ GTX의 속도 (200 km/h) 둜 μ—΄μ°¨μ†λ„μ˜ 증가에 λ”°λ₯Έ 곡λ ₯효과λ₯Ό ν‰κ°€ν•˜μ˜€λ‹€. 그리고 곡λ ₯ λ³€μˆ˜λ“€μ˜ (곡λ ₯μ €ν•­, 풍압과 μ°¨λŸ‰ λ‚΄λΆ€μ••λ ₯ λ³€ν™”) κ²½ν–₯성을 섀계 λ³€μˆ˜λ“€μ„ (μ°¨λŸ‰ 전두뢀 ν˜•μƒ, 터널 단면적과 ν™˜κΈ°κ΅¬) λ³€ν™”μ‹œμΌœ κ°€λ©΄ λΆ„μ„ν•˜μ˜€λ‹€. κ·Έ 후에, κ²½ν–₯μ„± 뢄석을 ν†΅ν•œ GTX의 κ°œλ…μ„€κ³„λ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€. GTX의 κ°œλ…μ„€κ³„λŠ” 고속열차와 μ§€ν•˜μ² μ˜ 섀계 기쀀에 μ˜ν•΄ ν‰κ°€λ˜μ—ˆλ‹€. ν„°λ„μ—μ„œ μ—΄μ°¨μ˜ 곡λ ₯νŠΉμ„±μ„ λΆ„μ„ν•˜κΈ° μœ„ν•΄ μ „μ‚°μœ μ²΄μ—­ν•™μ„ (Computational Fluid Dynamics) μ‚¬μš©ν•˜μ˜€μœΌλ©° μΆ•λŒ€μΉ­ λ°©λ²•μœΌλ‘œ 해석을 μˆ˜ν–‰ν•˜μ˜€λ‹€. 해석 결과의 뢄석을 톡해 GTX의 섀계가 ν˜„μž¬ μ§€ν•˜μ² κ³ΌλŠ” λ‹€λ₯΄κ²Œ μ§„ν–‰λ˜μ–΄μ•Ό ν•œλ‹€λŠ” 것을 μ•Œκ²Œ λ˜μ—ˆλ‹€. 전두뢀 ν˜•μƒμ€ 곡λ ₯저항을 쀄이기 μœ„ν•˜μ—¬ ν˜„μž¬ μ§€ν•˜μ² μ˜ λ¬΄λ”˜ ν˜•μƒμ΄ μ•„λ‹Œ KTX-μ‚°μ²œκ³Ό 같은 μœ μ„ ν˜• ν˜•μƒμœΌλ‘œ μ„€κ³„λ˜μ–΄μ•Ό ν•˜λ©°, 터널 단면적은 ν˜„μž¬μ˜ μ§€ν•˜μ² λ³΄λ‹€ λ„“μ–΄μ Έμ•Ό ν•œλ‹€. 슀크린 λ„μ–΄μ˜ 경우 μ„€κ³„κΈ°μ€€μ˜ κ°•ν™”κ°€ ν•„μš”ν•˜λ©°, GTX μ°¨λŸ‰μ€ 승객의 편의λ₯Ό μœ„ν•΄ 기밀이 μœ μ§€λ˜μ§€ μ•ŠλŠ” ν˜„μž¬ μ§€ν•˜μ²  μ°¨λŸ‰κ³ΌλŠ” λ‹€λ₯΄κ²Œ 기밀이 μœ μ§€λ˜λŠ” μ°¨λŸ‰μœΌλ‘œ μ„€κ³„λ˜μ–΄μ•Ό ν•  κ²ƒμœΌλ‘œ νŒλ‹¨λœλ‹€.South Korea is proposing to construct a new public transportation system. The Great Train eXpress (GTX) will be built underground as the present subway system. However, the cruise speed will be 200 km/h which is about two times faster than the present subway. When the train speed increases in a tunnel, the problems related to the aerodynamics are the important issues: aerodynamic drag, wind load on the platform screen door and aural discomfort for passengers. Therefore, we performed the analysis of aerodynamic phenomena in a subway tunnel and conceptual design of GTX. First, the effect of the speed increase on the aerodynamic parameters was investigated as the train speed increases by the speed of GTX (200 km/h) based on the speed of present subway (100 km/h). And the trend of the aerodynamic parameters (aerodynamic drag, pressure wave and pressure change inside the train) is analyzed by changing the design parameters (nose shape, tunnel cross-sectional area and shaft). After that, GTX is designed conceptually from the tendency analysis. The conceptual design is evaluated by the design criteria of the high-speed train and subway. An analysis to estimate the aerodynamic characteristics of the train in the tunnel is performed using Computational Fluid Dynamics (CFD). Numerical simulations were also performed by the axisymmetric method. Through the analysis of the simulation results, it is found that the design of GTX should be carried out carefully. The nose shape of GTX should be a streamlined shape like KTX-Sancheon to reduce the aerodynamic drag. The tunnel cross-sectional area should be larger than the present subway tunnel. Tighter criteria about the design of the platform screen door is needed for the high-speed subway like GTX. a sealed train is needed to prevent the internal pressure change from the rapid external pressure change for passenger safety and comfort. These results are applicable for the basic design of the proposed GTX and tunnel system.Abstract I Table of Contents III List of Tables V List of Figures VI 1. Introduction 1 2. Research objectives 7 3. Method and Validation 9 3.1. Simulation methods 9 3.1.1 Modeling of the train travelling in tunnels 9 3.1.2 Flow solver and turbulence modeling 11 3.1.3 Modeling of the train running 12 3.1.4 Boundary conditions 16 3.2. Validation cases 19 3.2.1 Compression wave generated by the entry of a high-speed train into a tunnel 19 3.2.2 Pressure wave propagation in tunnels-I: 1/164th scale model 25 3.2.3 Pressure wave propagation in tunnels-II: Emmequerung tunnel 30 4. Simulation results and analysis 35 4.1. Effects of design parameters in regard to aerodynamic parameters 35 4.1.1 Aerodynamic drag 35 4.1.1.1 Effect of speed increase 38 4.1.1.2 Effect of nose shape 45 4.1.1.3 Effect of tunnel cross-sectional area 50 4.1.2 Wind pressure on platform screen door 55 4.1.2.1 Effect of speed increase 59 4.1.2.2 Effect of nose shape 61 4.1.2.3 Effect of tunnel cross-sectional area 64 4.1.2.4 Effect of train interference 68 4.1.2.5 Effect of shaft 71 4.1.3 Pressure change inside train 72 4.1.3.1 Effect of speed increase 74 4.1.3.2 Effect of nose shape 78 4.1.3.3 Effect of tunnel cross-sectional area 81 4.1.3.4 Effect of train interference 84 4.1.3.5 Effect of shaft 88 4.2. Conceptual design of GTX considering aerodynamic drag and evaluation 92 4.2.1 Conceptual design 92 4.2.2 Evaluation of wind pressure on platform screen door 97 4.2.2.1 Single train 97 4.2.2.2 Two trains 98 4.2.3 Evaluation of Pressure change inside train 101 4.2.3.1 Single train 101 4.2.3.2 Two trains 105 5. Conclusions 112 References 115 ꡭ문초둝 122Docto

    κ³€μΆ©λΉ„ν–‰μ—μ„œ 곡λ ₯λ°œμƒμ— κ΄€ν•œ 2차원 μœ λ™μž₯ νŠΉμ„± : μ΄ˆνŒŒλ¦¬μ™€ κ²€μ •κΈˆνŒŒλ¦¬μ˜ 전진 λΉ„ν–‰ 비ꡐ = Two-dimensional flow properties of insect flight about aerodynamic force generation : comparison between Phormia Regina and Drosophila Melanogaster

    No full text
    λ³Έ μ—°κ΅¬λŠ” μ„œμšΈλŒ€ν•™κ΅ 기계항곡곡학뢀 BK21 사업과 ν•­κ³΅μš°μ£Όμ‹ κΈ°μˆ μ—°κ΅¬μ†Œμ˜ μ§€μ›μœΌλ‘œ μˆ˜ν–‰λ˜μ—ˆμŒ. λ˜ν•œ λ³Έ μ—°κ΅¬λŠ” ν•œκ΅­κ³Όν•™κΈ°μˆ μ •λ³΄μ—°κ΅¬μ›μ˜ [μŠˆνΌμ»΄ν“¨νŒ… μ‘μš©μ—°κ΅¬ μ „λž΅μ§€μ› ν”„λ‘œκ·Έλž¨]을 톡해 μˆ˜ν–‰λ˜μ—ˆμŒ
    corecore