27 research outputs found

    ์žญ์—…์˜ ๋น„์„ ํ˜• ๊ตฌ์กฐ-์ง€๋ฐ˜ ์—ฐ์„ฑ ๋ชจ๋ธ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ : ์ƒ๋ถ€ ์—ฐ์•ฝํ•œ ์ ํ† -ํ•˜๋ถ€ ๋‹จ๋‹จํ•œ ์ ํ†  ์กฐ๊ฑด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์กฐ์„ ํ•ด์–‘๊ณตํ•™๊ณผ, 2020. 8. ์žฅ๋ฒ”์„ .Offshore structures with jack-up systems can be operated at depths up to 150 meters and are used not only as drilling rigs and production rigs but also as support and accommodation units. The jack-up operation is carried out under environmental loads such as wind and wave, for which it is essential to understand jack-up behavior and structural response. As the boundary condition, the foundation model of offshore structures affects the vibration mode of the structure, and consequently, the behavioral and structural analysis results as well. Typical simple foundation models such as pinned and linear spring do not reflect a structure-soil interaction in the jack-up analysis. As an alternative, the International Organization for Standardization (ISO) guideline has suggested this structure-soil interaction model considering soil plasticity, from a simple secant model to a yield interaction model and a time-consuming but accurate soil continuum model. In this study, a structural analysis of jack-up has been conducted, focusing on the yield interaction model and the soil continuum model as a structure-soil interaction model. Jack-up structural analysis is performed for dynamic loads in consideration of the structure-soil interaction, and an appropriate interaction model for soft over stiff clay is presented in this study. A yield envelope study as yield criteria of the combined loads has been performed on soft over stiff clay. Studies on soft over stiff clay tend to be less studied because a squeezing effect ensures sufficient vertical bearing capacity. Tensile vertical capacity is independent of the lower stiff clay, and a corresponding best-fit equation of yield envelope and the ultimate capacity ratio are presented about soft over stiff clay. The yield interaction model, the model B for clay, derived for consideration of the nonlinear behavior of soil, has been studied continuously improved until recently. The existing model generally assumes a linear load-displacement relationship in the elastic region. However, this linear relationship may overestimate the load as the plastic occurs gradually in soil behavior in practice. In this study, the Hyperbolic model B is proposed, and the horizontal and rotational load-displacement curves in the elastic region are assumed to have a hyperbolic relationship. The regression equation for the initial stiffness accompanying the model is presented. A fully coupled structure-soil interaction analysis with a soil continuum model has been performed to validate the yield interaction model. Large deformation of the soil accompanied by the deep penetration is considered simultaneously in the structural analysis of jack-up. The proposed yield interaction model uses yield envelope and ultimate capacities that are well suited to soft over stiff clay, and a hyperbolic nonlinear load-displacement relationship is assumed before the yield. As a result, inside the yield envelope, the existing model overestimates the moment acting on the soil, thereby underestimating the bending moment at the hull-leg joint. The model proposed in this study has predicted the soil response and bending moment distribution of the leg well, and these results are validated with the those of the soil continuum model. Wave load analysis has been performed using the proposed yield interaction model and the soil continuum model. The dynamic effects that should be considered compared to the monotonic load analysis have been investigated, and it has been validated that the proposed yield interaction model can predict the response of the wave load analysis in the elastic region well.์žญ์—… ํ•ด์–‘ ๊ตฌ์กฐ๋ฌผ์€ ์ˆ˜์‹ฌ 150m๊นŒ์ง€ ์„ค์น˜๋˜๋ฉฐ, ์‹œ์ถ” ๋ฐ ์ƒ์‚ฐ์šฉ ๋ฆฌ๊ทธ ๋ฟ ์•„๋‹ˆ๋ผ ํ•ด์ƒํ’๋ ฅ๋ฐœ์ „๊ธฐ ์ „๋ฌธ์„ค์น˜์„ ๊ณผ ๊ฐ™์€ ์„ค์น˜ ์œ ๋‹›์—๋„ ์‚ฌ์šฉ๋˜์–ด์˜ค๊ณ  ์žˆ๋‹ค. ์žญ์—…์€ ํŒŒ๋„์™€ ๋ฐ”๋žŒ ๋“ฑ์˜ ํ™˜๊ฒฝํ•˜์ค‘ ํ•˜์—์„œ ์ž‘์—…์ด ์ˆ˜ํ–‰๋˜๋ฏ€๋กœ ์„ค๊ณ„ ์‹œ ๊ทธ์— ๋”ฐ๋ฅธ ์žญ์—…์˜ ๊ฑฐ๋™ ๋ฐ ๊ตฌ์กฐ ๋ฐ˜์‘์„ ๋ช…ํ™•ํžˆ ์ดํ•ดํ•ด์•ผ ํ•œ๋‹ค. ๊ฑฐ๋™ ๋ฐ ๊ตฌ์กฐ ํ•ด์„ ์‹œ ํ•ด์–‘๊ตฌ์กฐ๋ฌผ์˜ ๊ฒฝ๊ณ„์กฐ๊ฑด์œผ๋กœ ์ž‘์šฉํ•˜๋Š” ์ง€๋ฐ˜ ๋ชจ๋ธ์€ ๊ตฌ์กฐ๋ฌผ์˜ ์ง„๋™ ๋ชจ๋“œ์— ์˜ํ–ฅ์„ ์ฃผ์–ด ํ•ด์„ ๊ฒฐ๊ณผ์—๋„ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ฒŒ ๋œ๋‹ค. ์ผ๋ฐ˜์ ์ธ ์ง€๋ฐ˜ ๋ชจ๋ธ์—๋Š” ๋‹จ์ˆœ ์ง€์ง€ ์กฐ๊ฑด์ด๋‚˜ ์„ ํ˜• ์Šคํ”„๋ง์„ ์ด์šฉํ•œ ๋ชจ๋ธ์ด ์žˆ์œผ๋‚˜, ์ด๋Š” ์žญ์—…์˜ ๊ตฌ์กฐ-์ง€๋ฐ˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๊ทธ ๋Œ€์•ˆ์œผ๋กœ International Organization for Standardization (ISO) ์—์„œ๋Š” ๊ฐ€์ด๋“œ๋ผ์ธ์„ ํ†ตํ•ด ๊ตฌ์กฐ-์ง€๋ฐ˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ณ ๋ คํ•˜๋Š” ๋น„์„ ํ˜• ์ง€๋ฐ˜ ๋ชจ๋ธ๋“ค์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Š” ๊ฐ€์žฅ ๋‹จ์ˆœํ•œ ๋ชจ๋ธ์ธ ์‹œ์ปจํŠธ ๋ชจ๋ธ (secant model)๋ถ€ํ„ฐ ์ง€๋ฐ˜์˜ ์†Œ์„ฑ ๋ณ€์œ„๋ฅผ ๊ณ ๋ คํ•˜๋Š” ํ•ญ๋ณต ์ƒํ˜ธ์ž‘์šฉ ๋ชจ๋ธ (yield interaction model), ๊ทธ๋ฆฌ๊ณ  ๊ฐ€์žฅ ์ •ํ™•ํ•˜์ง€๋งŒ ์‹œ๊ฐ„์ด ๊ฑธ๋ฆฌ๋Š” ์ง€๋ฐ˜ ์—ฐ์†์ฒด ๋ชจ๋ธ (soil continuum model)๋กœ ๋‚˜๋‰˜์–ด์ง„๋‹ค. ์ด๋Ÿฌํ•œ ๋น„์„ ํ˜• ์ง€๋ฐ˜ ๋ชจ๋ธ ์ค‘ ์ด๋ฒˆ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ตฌ์กฐ-์ง€๋ฐ˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ•ญ๋ณต ์ƒํ˜ธ์ž‘์šฉ ๋ชจ๋ธ๊ณผ ์ง€๋ฐ˜ ์—ฐ์†์ฒด ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋™์  ํ•˜์ค‘ ํ•˜์—์„œ ๊ตฌ์กฐ-์ง€๋ฐ˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ณ ๋ คํ•œ ์ง€๋ฐ˜ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์žญ์—…์˜ ๊ตฌ์กฐํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ƒ๋ถ€ ์—ฐ์•ฝํ•œ ์ง€๋ฐ˜-ํ•˜๋ถ€ ๋‹จ๋‹จํ•œ ์ ํ†  ์กฐ๊ฑด์—์„œ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์ ์ ˆํ•œ ํ•ญ๋ณต ์ƒํ˜ธ์ž‘์šฉ ๋ชจ๋ธ์„ ์ œ์‹œํ•˜๊ณ  ์ง€๋ฐ˜ ์—ฐ์†์ฒด ๋ชจ๋ธ์„ ํ†ตํ•ด ์ด๋ฅผ ๊ฒ€์ฆ ๋น„๊ต ํ•˜์˜€๋‹ค. ์ƒ๋ถ€ ์—ฐ์•ฝํ•œ ์ง€๋ฐ˜-ํ•˜๋ถ€ ๋‹จ๋‹จํ•œ ์ ํ†  ์กฐ๊ฑด์—์„œ, ์ง€๋ฐ˜์— ์ž‘์šฉํ•˜๋Š” ๋ณตํ•ฉ ํ•˜์ค‘์˜ ํ•ญ๋ณต ์—ฌ๋ถ€๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ํ•ญ๋ณต ๊ณก๋ฉด์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ํ•ด๋‹น ์ง€๋ฐ˜ ์กฐ๊ฑด์€ ํ•˜๋ถ€ ๋‹จ๋‹จํ•œ ์ ํ†  ์ง€๋ฐ˜์œผ๋กœ ์ธํ•ด ์ƒ๋ถ€ ์ง€๋ฐ˜์ด ์••์ฐฉ๋˜์–ด ์ถฉ๋ถ„ํ•œ ์ง€์ง€๋ ฅ์ด ํ™•๋ณด๋˜๊ธฐ ๋•Œ๋ฌธ์— ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜์ง€ ์•Š์•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์žญ์—… ์šด์šฉ ์‹œ ์‚ฌ์šฉ๋˜๋Š” ์ง€๋ฐ˜ ๋ชจ๋ธ์€ ์ƒ๋ถ€์™€ ํ•˜๋ถ€ ์ง€๋ฐ˜์˜ ์˜ํ–ฅ์„ ๋ชจ๋‘ ๋ฐ›์œผ๋ฏ€๋กœ ์ƒ๋ถ€ ์—ฐ์•ฝํ•œ ์ ํ† -ํ•˜๋ถ€ ๋‹จ๋‹จํ•œ ์ ํ†  ์ง€๋ฐ˜์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ํ•ด๋‹น ์ง€๋ฐ˜์—์„œ ์ˆ˜์ง ์••์ถ• ์šฉ๋Ÿ‰์€ ์••์ฐฉ ํšจ๊ณผ๋กœ ์ธํ•ด ์ฆ๊ฐ€ํ•œ ๋ฐ˜๋ฉด ์ˆ˜์ง ์ธ์žฅ ์šฉ๋Ÿ‰์€ ํ•˜๋ถ€ ๋‹จ๋‹จํ•œ ์ ํ†  ์ง€๋ฐ˜์˜ ์˜ํ–ฅ์„ ๋ฐ›์ง€ ์•Š์•˜๋‹ค. ํ•ด๋‹น ์ง€๋ฐ˜์— ์ž˜ ๋งž๋Š” ํ•ญ๋ณต ๊ณก๋ฉด ์‹๊ณผ ์ด ๋•Œ ์‚ฌ์šฉ๋˜๋Š” ์ˆ˜์ง, ์ˆ˜ํ‰, ํšŒ์ „ ๋ฐฉํ–ฅ์˜ ๊ทนํ•œ ์ง€์ง€๋ ฅ (ultimate capacity)์— ๋Œ€ํ•˜์—ฌ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ ํ†  ์ง€๋ฐ˜์—์„œ ๋ชจ๋ธ ๋น„ (model B)๋กœ ๋ถˆ๋ฆฌ๋Š” ํ•ญ๋ณต ์ƒํ˜ธ์ž‘์šฉ ๋ชจ๋ธ์€ ์†Œ์„ฑ ๋ณ€์œ„๋ฅผ ํ†ตํ•ด ์ง€๋ฐ˜์˜ ๋น„์„ ํ˜• ๊ฑฐ๋™์„ ๊ณ ๋ คํ•˜๋ฉฐ, ๊ตฌ์กฐ-์ง€๋ฐ˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๋‹จ์ˆœํ™”ํ•˜์—ฌ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ๋กœ ์ตœ๊ทผ๊นŒ์ง€ ์—ฐ๊ตฌ๋˜์–ด ์˜ค๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด ๋ชจ๋ธ ๋น„๋Š” ํ•ญ๋ณต ๊ณก๋ฉด์— ๋„๋‹ฌํ•˜๊ธฐ ์ด์ „์˜ ํƒ„์„ฑ ์˜์—ญ์—์„œ ์„ ํ˜•์˜ ํž˜-๋ณ€์œ„ ๊ด€๊ณ„์™€ ํ•จ๊ป˜ ์ˆ˜ํ‰-ํšŒ์ „ ๋ฐฉํ–ฅ์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ณ ๋ คํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์ง€๋ฐ˜์€ ์ ์ง„์ ์œผ๋กœ ์†Œ์„ฑ์ด ๋ฐœ์ƒํ•˜๋ฉฐ ๊ทธ์— ๋”ฐ๋ผ ์„ ํ˜•์˜ ํž˜-๋ณ€์œ„ ๊ด€๊ณ„๋ฅผ ๊ฐ–์ง€ ์•Š๋Š”๋‹ค. ์ด๋ฒˆ ์—ฐ๊ตฌ์—์„œ๋Š” ๋น„์„ ํ˜•์„ฑ์ด ํฐ ์ˆ˜ํ‰, ํšŒ์ „ ๋ฐฉํ–ฅ์— ๋Œ€ํ•˜์—ฌ ๋น„์„ ํ˜• ์Œ๊ณก์„  ํž˜-๋ณ€์œ„ ๊ด€๊ณ„๋ฅผ ๊ฐ€์ •ํ•œ ํ•˜์ดํผ๋ณผ๋ฆญ ๋ชจ๋ธ ๋น„ (hyperbolic model B)๋ฅผ ์ œ์•ˆํ•˜๊ณ , ์ด ๋•Œ ์‚ฌ์šฉ๋˜๋Š” ์ดˆ๊ธฐ ์ง€๋ฐ˜ ๊ฐ•์„ฑ์— ๋Œ€ํ•œ ์‹์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๊ฒ€์ฆ์„ ์œ„ํ•˜์—ฌ ์ง€๋ฐ˜ ์—ฐ์†์ฒด ๋ชจ๋ธ์„ ์ด์šฉํ•œ ์žญ์—…์˜ ๊ตฌ์กฐ-์ง€๋ฐ˜ ์ƒํ˜ธ์ž‘์šฉ ํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์—ฐ์•ฝ ์ ํ† ์—์„œ์˜ ๊นŠ์€ ๊ด€์ž… ๊นŠ์ด๋กœ ์ธํ•œ ์ง€๋ฐ˜์˜ ๋Œ€๋ณ€ํ˜•์„ ์žญ์—… ๊ตฌ์กฐ ํ•ด์„์— ๊ณ ๋ คํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ํ•ญ๋ณต ์ƒํ˜ธ์ž‘์šฉ ๋ชจ๋ธ์ธ ํ•˜์ดํผ๋ณผ๋ฆญ ๋ชจ๋ธ ๋น„๋Š” ์ƒ๋ถ€ ์—ฐ์•ฝํ•œ ์ ํ† -ํ•˜๋ถ€ ๋‹จ๋‹จํ•œ ์ ํ†  ์กฐ๊ฑด์—์„œ ํ•ญ๋ณต ๊ณก๋ฉด ์ด์ „๊ณผ ์ดํ›„ ์ง€๋ฐ˜ ์—ฐ์†์ฒด ๋ชจ๋ธ๊ณผ ํ•ด์„ ๊ฒฐ๊ณผ๊ฐ€ ๋น„์Šทํ•œ ๊ฒฝํ–ฅ์„ ๋ณด์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ธฐ์กด ๋ชจ๋ธ ๋น„๋Š” ํ•ญ๋ณต ๊ณก๋ฉด ์•ˆ์—์„œ ์„ ํ˜• ํž˜-๋ณ€์œ„ ๊ด€๊ณ„๋กœ ์ธํ•ด ์ง€๋ฐ˜์— ์ž‘์šฉํ•˜๋Š” ๋ชจ๋ฉ˜ํŠธ๋ฅผ ๊ณผ๋Œ€ํ‰๊ฐ€ํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๊ณ , ๊ฒฝ๊ณ„์กฐ๊ฑด์œผ๋กœ์จ ๊ตฌ์กฐ ํ•ด์„์— ์˜ํ–ฅ์„ ๋ฏธ์ณ ์žญ์—… ๋ ˆ๊ทธ์˜ ๋ชจ๋ฉ˜ํŠธ๊ฐ€ ๊ณผ์†Œํ‰๊ฐ€๋˜๋Š” ๊ฒฝํ–ฅ์ด ๋ฐœ์ƒํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ํ•˜์ดํผ๋ณผ๋ฆญ ๋ชจ๋ธ ๋น„๋Š” ํ•ญ๋ณต ๊ณก๋ฉด ์ด์ „์˜ ๋น„์„ ํ˜•์„ฑ์„ ๊ณ ๋ คํ•จ์œผ๋กœ์จ ์žญ์—… ๋ ˆ๊ทธ์˜ ๋ชจ๋ฉ˜ํŠธ ๋ถ„ํฌ๋ฅผ ์ž˜ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ์ด๋ ‡๊ฒŒ ์ œ์•ˆ๋œ ํ•ญ๋ณต ์ƒํ˜ธ์ž‘์šฉ ๋ชจ๋ธ๊ณผ ์ง€๋ฐ˜ ์—ฐ์†์ฒด ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ์žญ์—…์˜ ๋™์  ๊ตฌ์กฐํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋™์  ์‚ฌ์ธํŒŒ ํ•˜์ค‘์— ๋Œ€ํ•œ ์ง€๋ฐ˜ ๋ฐ˜์‘ ๋ฐ ์žญ์—…์˜ ๊ตฌ์กฐ ๋ฐ˜์‘์„ ๊ณ„์‚ฐํ•˜๊ณ  ์ •์  ํ•˜์ค‘ ๊ฒฐ๊ณผ์™€ ๋น„๊ตํ•˜์˜€๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” ๋™์ ์ฆํญ๊ณ„์ˆ˜ ๋ฟ ์•„๋‹ˆ๋ผ ์ง€๋ฐ˜์˜ ๋™์  ํšจ๊ณผ ๋ฐ ๊ด€์„ฑ๋ ฅ์— ์˜ํ•œ ํšจ๊ณผ๊ฐ€ ์กด์žฌํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ์ด์— ๋Œ€ํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. ํ•ญ๋ณต ์ƒํ˜ธ์ž‘์šฉ ๋ชจ๋ธ ๋ฐ ์ง€๋ฐ˜ ์—ฐ์†์ฒด ๋ชจ๋ธ์„ ํ†ตํ•ด ๊ตฌ์กฐ-์ง€๋ฐ˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ณ ๋ คํ•˜์—ฌ ๋™์  ํ•˜์ค‘์— ๋Œ€ํ•œ ์žญ์—… ๊ตฌ์กฐํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ํ•ญ๋ณต ๊ณก๋ฉด ์ด์ „๊ณผ ์ดํ›„ ์ง€๋ฐ˜ ๋ฐ˜์‘ ๋ฐ ์žญ์—… ๋ ˆ๊ทธ์˜ ๋ชจ๋ฉ˜ํŠธ ๋ถ„ํฌ๋ฅผ ์ž˜ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค.Chapter 1. Introduction ๏ผ‘ 1.1. Research background ๏ผ‘ 1.2. Research objective and scope ๏ผ‘๏ผ˜ Chapter 2. Soil LDFE analysis technique ๏ผ’๏ผ’ 2.1. Introduction ๏ผ’๏ผ’ 2.2. Numerical methodology ๏ผ’๏ผ” 2.3. Analysis model ๏ผ’๏ผ– 2.4. Verification results ๏ผ’๏ผ— 2.4.1. Penetration of pipe in clay ๏ผ’๏ผ— 2.4.2. Penetration of spudcan in single clay ๏ผ“๏ผ‘ 2.4.3. Penetration of spudcan in multi-layered clay ๏ผ“๏ผ• Chapter 3. Yield envelope in soft over stiff clay ๏ผ”๏ผ 3.1. Introduction ๏ผ”๏ผ 3.2. Numerical methodology ๏ผ”๏ผ“ 3.2.1. Soil conditions and spudcan specifications ๏ผ”๏ผ“ 3.2.2. Finite element model ๏ผ”๏ผ˜ 3.3. Penetration analysis to simulate soil disturbance ๏ผ•๏ผ’ 3.4. Combined loads analysis for single clay ๏ผ•๏ผ” 3.4.1. Applied load sequence and load cases ๏ผ•๏ผ” 3.4.2. Maximum capacity analysis for single clay ๏ผ•๏ผ˜ 3.4.3. Yield envelope in single clay ๏ผ–๏ผ“ 3.4.4. Soil flow mechanism in combined loads analysis ๏ผ–๏ผ– 3.5. Combined loads analysis for soft-over-stiff clay ๏ผ–๏ผ˜ 3.5.1. Maximum capacity for soft-over-stiff clay respecting embedment ๏ผ–๏ผ˜ 3.5.2. Maximum capacity in soft-over-stiff clay for lower clay properties ๏ผ—๏ผ‘ 3.5.3. Yield envelope in soft-over-stiff clay respecting embedment ๏ผ—๏ผ“ 3.5.4. Yield envelope in soft-over-stiff clay for lower clay properties ๏ผ—๏ผ— 3.6. Yield envelope equation proposed for soft-over-stiff clay ๏ผ˜๏ผ 3.6.1. Derivation of the quadratic curve in the VH, VM plane ๏ผ˜๏ผ 3.6.2. Modified equation of soft-over-stiff clay ๏ผ˜๏ผ” 3.6.3. Effect of convergence criteria on the yield envelope ๏ผ˜๏ผ— Chapter 4. Yield envelope in soft over stiff clay ๏ผ˜๏ผ™ 4.1. Introduction ๏ผ˜๏ผ™ 4.2. Model B with hyperbolic elastic curve ๏ผ™๏ผ— 4.3. Regression model of initial stiffness ๏ผ‘๏ผ๏ผ’ 4.4. Hysteresis curve ๏ผ‘๏ผ‘๏ผ‘ Chapter 5. Validation with structural analysis of jack-up using different foundation models ๏ผ‘๏ผ‘๏ผ” 5.1. Introduction ๏ผ‘๏ผ‘๏ผ” 5.2. User element (UEL) ๏ผ‘๏ผ‘๏ผ– 5.2.1. Implementation of model B ๏ผ‘๏ผ‘๏ผ– 5.2.2. Validation of macro element ๏ผ‘๏ผ‘๏ผ™ 5.3. Single clay at deep embedment ๏ผ‘๏ผ’๏ผ“ 5.3.1. Jack-up structure ๏ผ‘๏ผ’๏ผ“ 5.3.2. FE model used in single clay analysis ๏ผ‘๏ผ’๏ผ” 5.3.3. Yield interaction model used in single clay analysis ๏ผ‘๏ผ“๏ผ‘ 5.3.4. Results ๏ผ‘๏ผ“๏ผ“ 5.4. Soft over stiff clay ๏ผ‘๏ผ“๏ผ— 5.4.1. FE model used in soft over stiff clay analysis ๏ผ‘๏ผ“๏ผ— 5.4.2. Yield interaction model used in soft over stiff clay analysis ๏ผ‘๏ผ”๏ผ‘ 5.4.3. Results of soft over stiff clay analysis ๏ผ‘๏ผ”๏ผ“ Chapter 6. Dynamic effects of jack-up structural analysis .๏ผ‘๏ผ•๏ผ” 6.1. Introduction ๏ผ‘๏ผ•๏ผ” 6.2. Dynamic effects in jack-up structural analysis ๏ผ‘๏ผ•๏ผ• 6.2.1. Categorization of dynamic effects ๏ผ‘๏ผ•๏ผ• 6.2.2. Strain rate dependency of clay on jack-up wave analysis ๏ผ‘๏ผ•๏ผ— 6.2.3. Phase shift effect ๏ผ‘๏ผ•๏ผ™ 6.2.4. Dynamic Amplification Factor (DAF) ๏ผ‘๏ผ–๏ผ‘ 6.3. Application : Jack-up structural analysis under dynamic wave load ๏ผ‘๏ผ–๏ผ“ 6.3.1. Selection of soft over stiff clay ๏ผ‘๏ผ–๏ผ“ 6.3.2. Wave environmental load ๏ผ‘๏ผ–๏ผ• 6.3.3. FE model for application ๏ผ‘๏ผ–๏ผ— 6.3.4. DAF calculation ๏ผ‘๏ผ—๏ผ 6.3.5. Analysis condition ๏ผ‘๏ผ—๏ผ“ 6.3.6. Case 1 : Analysis results ๏ผ‘๏ผ—๏ผ• 6.3.7. Case 2 : Analysis results ๏ผ‘๏ผ˜๏ผ Conclusion ๏ผ‘๏ผ˜๏ผ” Summary ๏ผ‘๏ผ˜๏ผ” Limitation and Future work ๏ผ‘๏ผ˜๏ผ˜ Bibliography ๏ผ‘๏ผ™๏ผDocto

    ่กŒๆ”ฟๆƒ…ๅ ฑๅ…ฑๅŒ๏ง็”จ์˜ ๆ”ฟ็ญ–ๅŸท่กŒ์— ๊ด€ํ•œ ๅˆ†ๆž : ้†ซ็™‚ไฟ้šชๆฅญๅ‹™ ไบ‹ไพ‹๋ฅผ ไธญๅฟƒ์œผ๋กœ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธๅคงๅญธๆ ก ่กŒๆ”ฟๅคงๅญธ้™ข :่กŒๆ”ฟๅญธ็ง‘ ๆ”ฟ็ญ–ๅญธๅฐˆๆ”ป,1996.Maste

    ๋‚ฎ์€ ์‹ ํ˜ธ๋Œ€ ์žก์Œ๋น„๋ฅผ ๊ฐ–๋Š” ์„ธํฌ ์™ธ ๊ธฐ๋ก์˜ ํ™œ๋™ ์ „์œ„ ๋ชจํ˜•ํ™” ๋ฐ ๊ฒ€์ถœ ๋ฐฉ๋ฒ•

    No full text
    Thesis (master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2003.Maste

    ์ง€์ •๋งฅ ํŒจํ„ด์„ ์ด์šฉํ•œ ๊ฐœ์ธ ์‹๋ณ„

    No full text
    Thesis(doctors) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ „๊ธฐ. ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2009.2.Docto

    Precipitation behavior and electrical properties of Cu-Mn-(Ni,Fe)-P alloys for electrical and electronic materials

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ธˆ์†๊ณตํ•™๊ณผ,1999.Docto

    Key Approaches in Character Education

    No full text
    corecore