30 research outputs found
์๋ฉํธ ์ ์งํ ์ํ๋ํธ ๋ณด์ฒ ์๋ณต๋ฌผ์์ ํฐํ๋ ์ํ๋ํธ ์ง๋์ฃผ์ ๋ฐ๊ตฌํ ๋คํ์ ์ ์ง๋ ฅ ํจ๊ณผ
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ) -- ์์ธ๋ํ๊ต๋ํ์ : ์น๊ณผ๋ํ ์น์๊ณผํ๊ณผ, 2022. 8. ํ์ฑ์ฃผ.๋ชฉ ์ : ๋ณธ ์ฐ๊ตฌ์ ๋ชฉ์ ์ CAD/CAM ๋ฐ๋ง์ผ๋ก ์ ์ํ ํฐํ๋ ์ํ๋ํธ ์ง๋์ฃผ์ ๋ฐ๊ตฌ ํํ์ ๋คํ๋ก ๊ธฐ๊ณ์ ์ธ ์ ์ง๋ฅผ ํ์ฑํ์ฌ ์๋ฉํธ ์ ์งํ ๋ณด์ฒ ๋ฌผ ์ ์ฐฉ ์ ์ ์ง๋ ฅ ๋ณํ์ ๋ํด ์์๋ณด๋ ๊ฒ์ด๋ค. ๋ณธ ์ฐ๊ตฌ์ ๊ท๋ฌด๊ฐ์ค์ ์๋ฉํธ ์ ์งํ ์ํ๋ํธ ๋ณด์ฒ ๋ฌผ์์ ์ง๋์ฃผ ๋ฒฝ์ ๋คํ ๋ชจ์์ ์ฌ์ฉํ์ ๋ ํ๊ท ์ ์ธ ์ ์ง๋ ฅ์ ์ฐจ์ด๊ฐ ์๋ค๋ ๊ฒ์ผ๋ก ์ค์ ํ์๋ค.
๋ฐฉ ๋ฒ : ์ด 180๊ฐ์ ์ํธ์ 12๊ฐ์ ๊ทธ๋ฃน (n=15)์ผ๋ก ๋๋์ด 6.0 ๋์ ์๋ ด๊ฐ์ ๊ฐ์ง 3.0 mm์ 6.0 mm ๊ธธ์ด์ ์ํ๋ํธ ์ง๋์ฃผ (Warentec, Seoul, Korea)๋ฅผ ํฐํ๋ ๋ฐ๋ง ๋จธ์ ์ ํตํด ์ ์ํ์๋ค. ์คํ๊ตฐ์ 2๊ฐ์ ๋คํ์ ์ง๋์ฃผ์ ๋ง์ฃผ๋ณด๋ ์ชฝ์ ์์น์ํจ ๊ทธ๋ฃน๊ณผ 4๊ฐ์ ๋คํ์ ์ง๋์ฃผ์ ๋์ผํ ๊ฐ๊ฒฉ์ผ๋ก ๋ฐฐ์นํ ๊ทธ๋ฃน์ผ๋ก ๋๋์๋ค. ๋คํ์ ๋ฐ๊ตฌ ํํ์ ํจ๋ชฐ๋ ๊ตฌ์กฐ๋ก 1.5 mm์ ์ง๊ฒฝ๊ณผ 0.75 mm์ ๊น์ด๋ฅผ ๊ฐ์ง๋ฉฐ ์ง๋์ฃผ์ ์น์ ์๋ฐฉ 1.0 mm ์์น์ ๋ชจ๋ ๋์ผํ๊ฒ ์์น์์ผฐ๋ค.
๋์กฐ๊ตฐ์ ๋คํ์ด ์๋ 3.0 mm์ 6.0 mm์ ํฐํ๋ ์ง๋์ฃผ๋ฅผ ๊ฐ๊ฐ E4 ์ค์บ๋ (3Shape, Copenhagen, Denmark)๋ฅผ ์ด์ฉํ์ฌ ์ค์บํ์์ผ๋ฉฐ, ์๋ฉํธ ์ ์งํ ์ํ๋ํธ ๋ณด์ฒ ๋ฌผ์ Exocad ํ๋ก๊ทธ๋จ (GmbH, Darmstadt, Germany) ์์์ ์ ์ํ์๋ค. ๋ด๋ฉด๊ฐ์ ๋ชจ๋ ๋์ผํ๊ฒ 50 ฮผm์ผ๋ก ๋ถ์ฌํ์์ผ๋ฉฐ, ์ ์ฐฉ ํ ์ ์ง๋ ฅ ๊ฒ์ฌ๋ฅผ ์ํด ๋ณด์ฒ ๋ฌผ ์๋ถ์ 5.0 mm ์ง๊ฒฝ์ ํํฌ๊ฐ ํต๊ณผํ ์ ์๋ ๊ดํตํ ๊ตฌ์กฐ๋ฌผ์ ํจ๊ป ํ์ฑํ์๋ค. ๋ณด์ฒ ๋ฌผ ์ ์ ๋ฐฉ๋ฒ์ผ๋ก๋ EOSINT M270 (EOS GmbH Electro Optical Systems, Krailling, Germany) ์ฅ๋น๋ฅผ ํตํด ๋ ์ด์ ์ ํฐ๋ง ๋ฐฉ์์ผ๋ก ์ฝ๋ฐํธ-ํฌ๋กฌ ์์ฌ๋ก ์ ์ํ์๋ค. ์ ์๋ ๋ณด์ฒ ๋ฌผ์ ํต๋ฒ์ผ๋ก ์ฐ๋ง ๊ณผ์ ์ ๊ฑฐ์ณค์ผ๋ฉฐ, ๋ด๋ฉด์ 4.0 ๊ธฐ์ ํ 50 ฮผm ์๋ฃจ๋ฏธ๋๋ก 5 ์ด๊ฐ ์๋๋ธ๋ผ์คํ
๋ฐ ์ธ์ฒ ํ ๊ฑด์กฐ์์ผฐ๋ค.
๋์ผํ ์ ์กฐ์
์ฒด (Warentec, Seoul, Korea)์์ ์์ฐ๋ 4.3 mm ์ง๊ฒฝ์ ์ํ๋ํธ ์๋ ๋ก๊ทธ๋ฅผ ์ํฌ๋ฆด๋ฆญ ๋ ์ง ๋ธ๋ก์ ์ฌ์์ผ๋ฉฐ 30 N/cm์ผ๋ก ํฐํ๋ ๋์ฌ๋ฅผ ์ด์ฉํด ์ง๋์ฃผ๋ฅผ ๊ณ ์ ํ์๋ค. ๊ณ ์ ํ ํฐํ๋ ๋์ฌ ์๋ฐฉ์ cotton pallet์ ์ฝ์
ํ ๋ค Fermit (Ivoclar Vivadent AG, Schaan, Switzerland)์ ์ด์ฉํด ์ง๋์ฃผ ์๋ฐฉ๊น์ง ์ถฉ์ ํ๊ณ ๊ด์กฐ์ฌ๊ธฐ๋ก 20 ์ด๊ฐ ๊ด์คํฉ ํ์๋ค.
์ ์ฐฉ์ ์ฌ์ฉ๋ ์๋ฉํธ ์ค ์ฒซ ๋ฒ์งธ๋ ์ฐํ์์ฐ-์ ์ง๋ ๊ณ ์๋ฉํธ์ธ TempBond (Kerr, Salerno, Italy)์ ๋ ์ง ๊ณ ์๋ฉํธ์ธ Panavia F2.0 (Kuraray, Fujimoto, Japan)์ด์๋ค. ์ ์ฐฉ๋ ์ํธ์ 5 kg์ ํ์ค์ผ๋ก 10 ๋ถ๊ฐ ์์ฐฉํ์์ผ๋ฉฐ, ์์ฌ ์๋ฉํธ๋ ์น๊ณผ์ฉ ์ต์คํ๋ก๋ฌ๋ฅผ ์ด์ฉํด ์ ๊ฑฐํ์๋ค. ์ดํ ๊ตฌ๊ฐ ๋ด ์จ๋ ๋ณํ๋ฅผ ์ฌํํ๊ธฐ ์ํด ์ด์ฒ๋ฆฌ๋ฅผ ์งํํ์๋ค. 30 ์ด์ฉ 5 ยฐC ์ 55 ยฐC ์ ๋์จ ์์กฐ์ ๋ฐ๋ณตํ์ฌ ์ ๊ธฐ๋๋ก ํ์๊ณ ์ด 10,000 ํ ์ํํ์๋ค.
์ดํ Universal testing machine (TW-D102, Tae-Won Tech CO., Seoul, Korea) ์ฅ๋น๋ฅผ ํ์ฉํ์ฌ 5.0 mm/min์ ์๋๋ก ์ ์ฐฉ๋ ๋ณด์ฒ ๋ฌผ์ ์น์ ์ฅ์ถ์ผ๋ก ๋น๊ฒจ ์ํ๋ํธ ์ง๋์ฃผ๋ก๋ถํฐ ๋ณด์ฒ ๋ฌผ์ด ์์ ํ ํ๊ฑฐ๋๋๋ฐ ํ์ํ ํ์ ์์ ๊ธฐ๋กํ์๋ค. ์ ์ง๋ ฅ ์ธก์ ์ ํตํด ํ ๊ทธ๋ฃน๋น 15ํ์ ๊ฒฐ๊ณผ๊ฐ์ ๊ธฐ๋กํ์๋ค.
๊ธฐ๋ก๋ ๋ชจ๋ ๋ฐ์ดํฐ๋ SPSS ํ๋ก๊ทธ๋จ (IBM SPSS Inc., Chicago, IL, USA)์ ์ฌ์ฉํ์ฌ ์ ๊ท๋ถํฌ ๋ง์กฑ๋ (ฮฑ = 0.05)๋ฅผ ์ฐ์ ์ ์ผ๋ก ๊ฒ์ ํ์์ผ๋ฉฐ, ์ดํ Two-way ANOVA test์ post-hoc Tukey HSD test๋ฅผ ํตํด ์ง๋์ฃผ ๊ธธ์ด์ ๋ณํ์ ๋คํ์ ํ์ฑ ์ ๋ฌด์ ๋ฐ๋ฅธ ์ ์ง๋ ฅ ์ฐจ์ด๊ฐ ๋ฐ์ํ๋์ง ํต๊ณ์ ์ผ๋ก ๋ถ์ ์ํํ์๋ค.
๊ฒฐ ๊ณผ : ์์ง๋ ๋ฐ์ดํฐ๋ ๋ชจ๋ ์ ๊ท๋ถํฌ๋ฅผ ๋ง์กฑํ์๊ณ , two-way ANOVA ํ
์คํธ ๊ฒฐ๊ณผ, ์ฌ์ฉ๋ ์ ์ฐฉ์ ์ ์ข
๋ฅ์ ๋ฌด๊ดํ๊ฒ ์ํ๋ํธ ์ง๋์ฃผ์ ๊ธธ์ด ๋ณํ์ ๋คํ ํ์ฑ์ผ๋ก ํ๊ท ์ ์ธ ์ ์ง๋ ฅ ์ฐจ์ด๋ ํต๊ณ์ ์ผ๋ก ์ ์ํ๊ฒ ๋ํ๋ฌ๋ค (P<.001). Post-hoc Tukey HSD ๊ฒ์ ์ ํตํด ๋์กฐ๊ตฐ์ธ ๋คํ์ด ์๋ ์ํ๋ํธ ์ง๋์ฃผ์ ๋นํด ๋คํ์ด ํ์ฑ๋ ๊ทธ๋ฃน์์ ํต๊ณ์ ์ผ๋ก ์ ์ํ๊ฒ ๋ ๋์ ํ๊ท ์ ์ง๋ ฅ์ด ๊ด์ฐฐ๋์์ผ๋ฉฐ (P<.001), ๋์ผํ ๋คํ ์๋ฅผ ๊ฐ์ง ๊ทธ๋ฃน ๊ฐ์ ๋น๊ต ์, ์ํ๋ํธ ์ง๋์ฃผ์ ๊ธธ์ด๊ฐ 3.0 mm์์ 6.0 mm๋ก ์ฆ๊ฐํ์์ ๋์ ํ๊ท ์ ์ง๋ ฅ ๋ํ ํต๊ณ์ ์ผ๋ก ์ ์ํ๊ฒ ์ฆ๊ฐํจ์ด ๊ด์ฐฐ๋์๋ค (P<.001). ์๋ฉํธ์ ํ์ ์์์ ๋คํ์ด ์๋ ๊ทธ๋ฃน์์๋ ์๋ฉํธ ๋๋ถ๋ถ์ด ํฌ๋ผ์ด ๋ด๋ฉด์ ์์กดํ์ฌ ์ ์ฐฉ์ฑ ํ์ (adhesive failure) ์์์ด ๊ด์ฐฐ๋์์ผ๋ฉฐ, ๋คํ์ด ์๋ ๊ทธ๋ฃน์์๋ ํฌ๋ผ์ด ๋ด๋ฉด์์์ ์ ์ฐฉ์ฑ ํ์ (adhesive failure)๊ณผ ๋คํ ๋ด๋ถ์ ์์ง์ฑ ํ์ (cohesive failure)๋ก ์ธํด ํผํฉ์ฑ ํ์ (mixed failure) ์์ ์ด ๊ด์ฐฐ๋์๋ค.
๊ฒฐ ๋ก : ํต๊ณ์ ๋ถ์์ ํตํด ๋ณธ ์ฐ๊ตฌ์ ๊ท๋ฌด๊ฐ์ค์ ๊ธฐ๊ฐ๋์์ผ๋ฉฐ, ๋ณธ ์ฐ๊ตฌ์ ํ๊ณ ๋ด์์ ๋ค์๊ณผ ๊ฐ์ ๊ฒฐ๋ก ์ ๋ด๋ฆด ์ ์์๋ค.
1. ์ง๋์ฃผ์ ๊ธธ์ด๊ฐ 3.0 mm์์ 6.0 mm๋ก ๋์ด๋ ๋์ ํ๊ท ์ ์ง๋ ฅ ์ฆ๊ฐ์จ์ TempBond์ Panavia F2.0 ์๋ฉํธ ๋ชจ๋ ๋คํ์ ์ฌ์ฉํ ๋์ ์ฆ๊ฐ์จ ๋ณด๋ค ๋ ๋์๋ค.
2. 3.0 mm ์ง๋์ฃผ์ TempBond๋ก ์ ์ฐฉ๋ ํฌ๋ผ์ด์ 4๊ฐ์ ๋คํ์ ํ์ฑํ ๊ฒฝ์ฐ ๋คํ์ด ์๋ ์ง๋์ฃผ๋ณด๋ค ํต๊ณ์ ์ผ๋ก ์ฐ์ํ ์ ์ง๋ ฅ์ ๋ณด์๋ค. 3.0 mm ์ง๋์ฃผ์ TempBond๋ก ์ ์ฐฉ๋ ํฌ๋ผ์ด์ 2๊ฐ์ ๋คํ์ ํ์ํ ๊ฒฝ์ฐ ๋คํ์ด ์๋ ์ง๋์ฃผ๋ณด๋ค ํต๊ณ์ ์ผ๋ก ์ ์๋ฏธํ ์ ์ง๋ ฅ ์ฐจ์ด๋ฅผ ๋ณด์ด์ง ์์๋ค.
3. 6.0 mm ์ง๋์ฃผ์ Panavia F2.0์ผ๋ก ์ ์ฐฉ๋ ํฌ๋ผ์ด์ 2๊ฐ์ 4๊ฐ์ ๋คํ์ ํ์ฑํ ๊ฒฝ์ฐ ๋คํ์ด ์๋ ์ง๋์ฃผ๋ณด๋ค ํต๊ณ์ ์ผ๋ก ์ฐ์ํ ์ ์ง๋ ฅ์ ๋ณด์๋ค. 6.0 mm ์ง๋์ฃผ์ Panavia F2.0์ผ๋ก ์ ์ฐฉ๋ ํฌ๋ผ์ด์ 2๊ฐ์ 4๊ฐ์ ๋คํ์ ํ์ฑํ ์ง๋์ฃผ ๊ฐ์ ์ ์๋ฏธํ ์ ์ง๋ ฅ ์ฐจ์ด๋ฅผ ๋ณด์ด์ง ์์๋ค.Purpose: To evaluate the effect of dimple structures on the retention of cobaltโchromium (CoโCr) crowns cemented to titanium abutments, with different heights and numbers of dimples on the axial walls. The null hypothesis was that there would be no difference in the mean retention force when the dimple shape was used on the axial wall of the titanium abutment for the cement-retained implant prosthesis.
Materials and methods: A total of 180 specimens were divided into 12 groups (n = 15). Titanium implant abutments (Warentec, Seoul, Korea) with heights of 3.0 and 6.0 mm and a convergence angle of 6.0 degrees were manufactured using a computer-aided manufacturing milling machine. The experimental group was divided into a group in which two dimples were placed on opposite sides of the abutment wall, and a group in which four dimples were placed on the abutment wall at equal distances. The dimple was an indented hemispherical shape with a diameter of 1.5 mm and depth of 0.75 mm. The dimples were positioned 1.0 mm above the gingival margin of the abutments.
Titanium abutments of 3.0 mm and 6.0 mm length were scanned using an E4 scanner (3Shape, Copenhagen, Denmark). The implant prosthesis was designed on the Exocad program (GmbH, Darmstadt, Germany). The cementation gaps were equally applied at 50 ฮผm. A 5.0 mm wide ring-shaped structure was designed on top of the crowns for the pull-out test. The cobalt-chromium (Co-Cr) alloy crowns were manufactured by laser sintering using EOSINT M270 laser sintering machine (EOS GmbH Electro Optical Systems, Krailling, Germany). The crowns were polished by a traditional method, and the inner surface was sandblasted with 50 ฮผm alumina under 4.0 bar for 5 seconds.
The implant analogs from the same manufacturer (Warentec, Seoul, Korea) were embedded in an acrylic resin block. The abutment was fixed with titanium screws by the manufacturer's recommended torque value of 30 N/cm. Cotton pallets were inserted above the titanium screw, and the rest of the gap was filled up to the top of the abutment using Fermit (Ivoclar Vivadent AG, Schaan, Switzerland) and light-cured for 20 seconds.
Two types of cements were used in the experiment: TempBond (Kerr, Salerno, Italy), a zinc oxideโeugenolโbased cement, and Panavia F2.0 (Kuraray, Fujimoto, Japan), a resin-based cement. The cemented specimen was subjected to 5 kg of load for 10 minutes, and excess cement was removed using a dental explorer. Thermal treatment was then applied to simulate the temperature change in the oral environment. The specimens were repeatedly immersed in a cold and hot water bath at 5 ยฐC and 55 ยฐC for 30 seconds each, up to total of 10,000 cycles.
Universal testing machine (TW-D102, Tae-Won Tech CO., Seoul, Korea) equipment was used for the pull-out test. The specimens were clamped and the hook of the testing machine was connected to the upper crown. Uniaxial tension with a loading speed of 5.0mm/min was applied. The amount of force to dislodge the crown from the abutment was recorded.
For all recorded data, satisfaction with normal distribution (ฮฑ = 0.05) was first tested using the SPSS program (IBM SPSS Inc., Chicago, IL, USA), followed by two-way ANOVA test and post-hoc Tukey HSD test. Statistical analysis was performed to determine whether there was a difference in retention force depending on the change of the length of the abutment and the presence or absence of dimples on the axial walls.
Results: Results of a two-way analysis of variance test showed a statistically significant difference in retention force due to the change of the length of the implant abutment and the formation of dimples, regardless of the types of adhesives used (P <.001). A significantly higher mean retention force was observed in the groups with dimples than in the control group, using the post hoc Tukey honestly significant difference test (P <.001). When compared between groups with the same number of dimples, a statistically significant increase in the mean force of retention was observed, where the length of the abutment changed from 3.0 to 6.0 mm (P <.001).
As for the fracture modes of cements in the groups without dimples, most of the cement residues were observed on the intaglio surface of the crown implying adhesive failure. For the groups with dimples, a combination of adhesive failure on the intaglio surface of the crown and cohesive failure on the dimples of the abutment denoting mixed failure of cement.
Conclusions: The null hypothesis was rejected, and the following conclusions could be drawn within the limitations of this study:
1. The rate of increase in the mean retention force for the abutment height change was higher than the use of dimples regardless of cement types.
2. TempBond-cemented crowns to 3.0-mm abutments with four dimples showed significantly higher retentive force compared to abutments with no dimple. Two dimples on 3.0-mm abutments showed no significant difference compared to abutments with no dimple by TempBond cementation.
3. Panavia F2.0-cemented crowns to 6.0-mm abutments with two and four dimples showed significantly higher retentive force compared to abutments with no dimple. Two and four dimples on 6.0-mm abutments showed no significant difference between each other by Panavia F2.0 cementation.โ
. INTRODUCTION- page 1
โ
ก. MATERIALS AND METHODS- page 5
1. Abutment fabrication- page 5
2. Study groups- page 7
3. Dimple design- page 8
3-1. Groups with two dimples- page 9
3-2. Groups with four dimples- page 9
4. Crown fabrication- page 10
4-1. Abutment scan- page 10
4-2. Crown design- page 11
4-3. Laser sintering of crowns- page 12
5. Laboratory analog- page 13
6. Cementation process- page 14
7. Thermocycling- page 14
8. Pull-out test for measurement of retentive forces- page 15
9. Statistical analysis- page 18
โ
ข. RESULTS- page 19
1. Measurement of retentive forces- page 19
2. Effect of dimples- page 21
3. Effect of abutment height- page 26
4. Relationship between number of dimples and abutment heights- page 28
5. Failure modes of cement- page 31
โ
ฃ. DISCUSSION- page 34
โ
ค. CONCLUSIONS- page 38
REFERENCES- page 39
SUPPLEMENTS- page 45
ABSTRACT IN KOREAN- page 48๋ฐ
์ฒด๊ณ์ ๋ฌธํ๊ณ ์ฐฐ: ์น๊ณผ์ฉ CAD/CAM ์ค์บ๋์ ์ข ๋ฅ์ ๊ทธ ๊ฒฐ๊ณผ๋ฌผ์ ์์์ ์ฉ ๊ฐ๋ฅ์ฑ
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ์น๊ณผ๋ํ ์น์ํ๊ณผ, 2018. 2. ์ด์นํ, ๋
ธ์ํธ, ๋ฐ์์.1. ๋ชฉ ์
๋ณธ ๋
ผ๋ฌธ์์๋ ์น๊ณผ์ฉ ์บ๋์บ ์ ์ฒซ ๋ฒ์งธ ๊ตฌ์ฑ ์์์ธ ์น๊ณผ์ฉ ์ค์บ๋์ ์ข
๋ฅ์ ์ฅ๋จ์ ์ ์ดํด๋ณผ ๊ฒ์ด๋ฉฐ, ๋ํ ์ถํ๋ ๊ธฐ์กด์ ์คํ ๋
ผ๋ฌธ๊ณผ ๋ฌธํ์ ์ฐธ๊ณ ํ์ฌ ๋์งํธ ๋ฐฉ์์ผ๋ก ์ ์๋ ๋จ์ผ ์๋ณต๋ฌผ์ ๋ณ์ฐ ์ค์ฐจ์ ์ ๋์ ์์์ ์ ์ฉ์ ๋ํ ์ ์๋ฏธ์ฑ์ ๊ฒํ ํด ๋ณผ ๊ฒ์ด๋ค.
2. ๋ฐฉ ๋ฒ
๋ฌธํ ์์ง์ ์ํด์ PubMed๊ณผ JPD (The Journal of Prosthetic Dentistry) ์ด ๋ ๊ฐ์ง์ ์จ๋ผ์ธ ๋ฐ์ดํฐ๋ฒ ์ด์ค ์ข
๋ฅ๋ฅผ ํ์ฉํ์์ผ๋ฉฐ, CAD/CAM, CAM, marginal, accuracy, discrepancy, fit์ ์ด๊ธฐ ๊ฒ์ ์ฃผ์ ์ด๋ก ๊ฒ์์ ์ค์ํ์๋ค. ์ต์ด ๊ฒ์๋ ๋
ผ๋ฌธ์ ์ด 214ํธ์ด์์ผ๋ฉฐ, ์ฒด๊ณ์ ๋ฌธํ๊ณ ์ฐฐ ๋ฐ ๋น๊ต ๋ถ์์ ์ํด inclusion๊ณผ exclusion criteria ์ค์ ํ ๊ทธ์ ๋ฐ๋ฅธ ์ต์ข
๋น๊ต ๋ถ์๋ ๋
ผ๋ฌธ์ ์ด 8ํธ์ด์๋ค. ์ฒด๊ณ์ ๋ฌธํ ๊ณ ์ฐฐ์ ์ํด PICO ์ค์ ์ด ํ์ํ๋ค. PICO๋ ๊ฐ๊ฐ (P): Population or Patient, (I): Intervention, (C): Comparison, (O): Outcome๋ฅผ ๋ปํ๋ฉฐ ๋ณธ ์ฐ๊ตฌ๋ฅผ ์ํด ์ค์ ๋ ์ง๋ฌธ์ (P) single crown ์๋ณต์ด ํ์ํ ํ์๋ค ์ค์์ (I) CAD/CAM ์ค์บ๋๋ฅผ ์ด์ฉํ ๊ฒฝ์ฐ (C) ์ผ๋ฐ์ ์ธ ์ธ์ ๋ฐฉ์๊ณผ ๋น๊ตํ์ ๋ (O) ๊ทธ ๊ฒฐ๊ณผ๋ฌผ์ด ์์์ ์ธ ํ์ฉ๋ฒ์ ๋ด์ ์กด์ฌํ๋์ง ์์๋ณด์๋ค. ๊ฐ๊ฐ์ ์ฐ๊ตฌ๋ ๋ฐ๋์ ์คํ๊ตฐ๊ณผ ๋์กฐ๊ตฐ์ ํฌํจํ๋ ๋
ผ๋ฌธ์ด์์ผ๋ฉฐ, ๋ณ์ฐ ์ ํฉ๋ ๊ฐ์ ํ๊ท ๋ณ์ฐ ๋ถ์ผ์น ๊ฐยฑํ์ค ํธ์ฐจ ๊ฐ(ฮผm) ์ผ๋ก ํ๊ธฐํ์๋ค.
3. ๊ฒฐ ๊ณผ
์ด 8ํธ์ ๋
ผ๋ฌธ์ ๊ฒฐ๊ณผ๋ค์ ๋น๊ต ๋ถ์ํ ๊ฒฐ๊ณผ, single crown ์๋ณต์ด ํ์ํ ํ์๋ค ์ค์์ CAD/CAM ๊ธฐ์ ์ ์ด์ฉํด ์ ์ํ ๋ณด์ฒ ๋ฌผ์ ๋ณ์ฐ์ ์ ํฉ๋๋ ์ผ๋ฐ์ ์ธ ๊ธฐ๊ณต ๋ฐฉ์๊ณผ ๋น๊ตํ์ ๋ ๋ชจ๋ ์์์ ์ธ ํ์ฉ๋ฒ์ (120ฮผm) ๋ด์ ์กด์ฌํจ์ ์ ์ ์์๋ค. 8ํธ์ ๋
ผ๋ฌธ์ ์ฌ์ฉ๋ 7๊ฐ์ง์ CAD/CAM ์์คํ
์ iTero, E4D, Echo, Everest, 3Shape, LAVA, ๊ทธ๋ฆฌ๊ณ CEREC ์ด์์ผ๋ฉฐ ๊ตฌ๊ฐ ๋ด ์ค์บ์ ํตํ ์ง์ ์
๋ ฅ๋ฒ์ด ๊ฐ๋ฅํ๋ E4D, 3Shape, ๊ทธ๋ฆฌ๊ณ CEREC๋ฅผ ์ฌ์ฉํ ์ฐ๊ตฌ์์ ๋น๊ต์ ๋ฎ์ ํ๊ท ๋ณ์ฐ์ค์ฐจ ๊ฐ๊ณผ ํ์คํธ์ฐจ ๊ฐ์ ๋ํ๋ด์๋ค. ๋ชจ๋ ๋น์ ์ด์ ๊ฐ์ ์
๋ ฅ๋ฒ์ ์ฌ์ฉํ iTero, Echo, Everest, ๊ทธ๋ฆฌ๊ณ LAVA ์์คํ
์ผ๋ก ์ ์ํ ์๋ณต๋ฌผ์ ํ๊ท ๋ณ์ฐ ์ค์ฐจ์ ํญ์ 35.32ยฑ4.40ฮผm์์ 117.5ยฑ54.36ฮผm๊น์ง ๋๊ณ ๋ค์ํ๊ฒ ๋ํ๋ฌ๋ค.์ 1 ์ฅ. ์ ๋ก 1
์ 2 ์ฅ. ์ฐ๊ตฌ๋์ ๋ฐ ์ฐ๊ตฌ๋ฐฉ๋ฒ 3
์ 1 ์ . ์ฐ๊ตฌ๋์ 3
1. ์น๊ณผ์ฉ ์ค์บ๋์ ์ข
๋ฅ 3
2. ์ ์ด์ ์ค์บ๋์ ์ฅ์ ๊ณผ ๋จ์ 4
3. ๋น์ ์ด์ ์ค์บ๋์ ์ฅ์ ๊ณผ ๋จ์ 4
์ 2 ์ . ์ฐ๊ตฌ๋ฐฉ๋ฒ 6
1. ๋ฌธํ์ ํ ๋ฐฉ๋ฒ 6
2. PICO ์ ๊ทผ๋ฒ 7
์ 3 ์ฅ. ๊ฒฐ ๊ณผ 9
์ 1 ์ . ๋
ผ๋ฌธ ๋ถ๋ฅ์ ๋ฐ๋ฅธ ๋ณ์ฐ์ ํฉ๋ 9
์ 2 ์ . PICO ์ ๊ทผ์ ๋ํ ํด์ 11
์ 4 ์ฅ. ๊ณ ์ฐฐ 13
์ 5 ์ฅ. ๊ฒฐ ๋ก 15
์ฐธ๊ณ ๋ฌธํ 16
Abstract 19Maste
ํฉ๋ฆฌ์ ๋ถ์ฃผ์์ ๊ธ์ต์์ฅ ๊ฐ ์ ์ดํจ๊ณผ
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ๊ฒฝ์ ํ๋ถ, 2013. 2. ์คํ.๋ณธ ๋
ผ๋ฌธ์ ๊ธ์ต ์๊ธฐ ๊ธฐ๊ฐ๋์ ์๋ก ๋ค๋ฅธ ๊ธ์ต์์ฅ ์ฌ์ด์ ๋ณ๋
์ฑ ์ถฉ๊ฒฉ ์ ์ด(transmission of volatility shocks)๋ฅผ ์ค๋ช
ํ๋ ํ๋์ ๋ฉ์นด๋์ฆ(mechanism)์ผ๋ก์ ํฉ๋ฆฌ์ ์ผ๋ก ๋ถ์ฃผ์ํ(rationally inattentive) ํฌ์์์ ํฌํธํด๋ฆฌ์ค(portfolio) ์ ํ(choice)์ ๋ค๋ฃฌ Mondria (2010)์ ๋ชจํ์ ๋ค๋ฃจ์๋ค. ์ฆ, ๋ชจํ์ ๋ถ์ํ๊ณ ์์น ํด(numerical solution)๋ฅผ ๊ณ์ฐํจ์ผ๋ก์จ ๋ณ๋์ฑ ์ถฉ๊ฒฉ์ ์ ์ด ๋ฉ์นด๋์ฆ์ ๋๋ฌ๋ด๋ฉฐ, ๋ชจํ์ ๊ฒฐ๊ณผ๋ฅผ ์๋ฃ์ ์ ์ฉํด๋ด์ผ๋ก์จ ๋ชจํ์ ํ๊ฐํ๋๋ฐ ๊ทธ๋ชฉ์ ์ด์๋ค.I. ์๋ก
1.1 ์ฐ๊ตฌ๋๊ธฐ
1.2 ์ ํ์ฐ๊ตฌ ๋ถ์
1.2.1 Frank (2007)
1.2.2 Admati (1985)
1.2.3 Mondria (2010)
1.3 ๋
ผ๋ฌธ์๊ตฌ์ฑ
II. ๋ณธ๋ก
2.1 ์์นํด์ ์๊ฑฐํ๋ชจํ์ ํจ์
2.2 ๊ธ์ต ์๋ฃ์ ์๊ฑฐํ๋ชจํ์ ํ๊ฐ
2.2.1 ์๋ฃ์ค๋ช
2.2.2 ๊ฒฐ๊ณผ์ํ๊ฐ
III. ๊ฒฐ๋ก
๋ถ๋ก
์ฐธ๊ณ ๋ฌธํ
AbstractMaste
[์ด์๋ถ์] ๋ํ ๊ด์ ์์์ ์ผยทํ์ต๋ณํ์ ์ ํ์๊ณผ ์ ์ฐฉยท๋ฐ์ ์ ์ํ ์ ์ธ
โ
. ์๋ก
โ
ก. ํ์์ฐ๊ณํ ์ผยทํ์ต๋ณํ์ ์ฌ์
์ ํ์ ๋ฐ ๊ฐ์ ์
1. ์ผยทํ์ต๋ณํ์ ์ฐธ์ฌ ๊ธฐ์
์ ์ ๊ธฐ์ค
2. ํ๋ จ ํ๋ก๊ทธ๋จ ๋ชจ๋ ๊ฐ๋ฐ ์ ๊ณ ๋ ค ์ฌํญ
3. ์ผยทํ์ต๋ณํ์ ์ ํน์ฑํ๊ณ ํ์ฌ์ ๋์์ ์ฐ๊ด ๊ด๊ณ
4. ํ์ฅ์ง๋๊ต์์ ์๊ฒฉ ์๊ฑด
โ
ข. ํฅํ ๊ณผ์ ๋ฐ ๊ฒฐ
Design and Implementation of NMEA Multiplexer based on the Optimized Queue
The National Marine Electronics Association(NMEA) is nonprofit-making cooperation composed with manufacturers, distributors, wholesalers and educational institutions. It could be defined as the interface and data protocol regarding to the electronic signal for the communication among equipments on the sea, which is widely used protocol for the interfaces in such as marine equipment including depth recorder, alpha radar, ECDIS, and GPS receiver.
The equipment use a basic port in order to process the signal from equipment using NMEA signal. When port of equipment don't have enough, use the multi-port for processing. However, we need to have module development simulation which could multiplex and provide NMEA related signal that we could solve the problems in multi-port application and exclusive equipment generation for a number of signal.
For now, we don't have any case or product using NMEA multiplexor so that we import expensive foreign equipment or embody NMEA signal transmission program like software, using multi-port. These have problems since we have to pay lots of money and build separate processing part for every application programs. Besides, every equipment generating NMEA signal are from different manufactures and have different platform so that it could cause double waste and loss of recourse. For making up for it, I suggest the NMEA multiplexor embodiment, which could independently move by reliable process and high performance single hardware module, improve the memory efficiency of module by designing the optimized Queue, and keep having reliability for realtime communication among the equipment such as main input sensor equipment Gyrocompass, Echo-sound, and GPS.Abstract
์ 1 ์ฅ ์ ๋ก 1
์ 2 ์ฅ NMEA ๋ฉํฐํ๋ ์ 3
2.1 NMEA ๊ฐ์ ๋ฐ ์ ํธ 3
2.2 NMEAใ๋ฉํฐํ๋ ์ 9
์ 3 ์ฅ NMEA ๋ฉํฐํ๋ ์์ ์ค๊ณ 12
3.1 NMEA ๋ฉํฐํ๋ ์ ์๊ตฌ์ฌํญ 12
3.2 NMEA ๋ฉํฐํ๋ ์์ ์ค๊ณ 14
3.3 ๋๊ธฐ-ํ ์๊ณ ๋ฆฌ์ฆ 19
์ 4 ์ฅ NMEA ๋ฉํฐํ๋ ์์ ๊ตฌํ 23
4.1 ๋๊ธฐ-ํ ์๊ณ ๋ฆฌ์ฆ์ ๊ตฌํ 23
4.2 ์๋ฎฌ๋ ์ดํฐ์ ๋ชจ๋ธ๋ง 29
4.3 ์คํ ๋ฐ ๊ณ ์ฐฐ 36
์ 5 ์ฅ ๊ฒฐ ๋ก 39
์ฐธ๊ณ ๋ฌธํ 4
Study on Plasma-enhanced Atomic Layer Deposition of Molybdenum Compounds Thin Films Using Mo(CO)6 with Various Plasma Gases
์ต๊ทผ ๋ช ๋
๊ฐ ์ ์ด๊ธ์ ์ฐํ๋ฌผ๊ณผ ์นผ์ฝ๊ฒ ํํฉ๋ฌผ์ ๊ด๋ฒ์ํ ์์ฉ์ ํ์ฉ ๋ ์ ์๋ ๋ฐ์ด๋ ํน์ฑ์ผ๋ก ์ธํ์ฌ ๋ง์ ๊ด์ฌ์ ๋ฐ์๋ค. ์ด๋ฌํ ๋ฌผ์ง ์ค ๋ชฐ๋ฆฌ๋ธ๋ด ํํฉ๋ฌผ์ ๊ฐ์ฅ ๋ง์ด ์ฐ๊ตฌ๋์ด์๊ณ ๊ทธ๋งํผ ๋ง์ ์ง์ฒ์ ๋ฌ์ฑํ ๋ฌผ์ง์ด๋ค. ํํธ ๊ธ์์ธ ๋ชฐ๋ฆฌ๋ธ๋ด ๋ํ ์ ๋์ฑ ๋ฌผ์ง๋ก์ ์ ๊ธฐ์์์ ๋ค์ํ๊ฒ ํ์ฉ๋์๋ค. ๋ฐ๋ผ์ ์ด๋ฒ ์ฐ๊ตฌ์์๋ ๋๋ฉด์ ์ ๊ท ์ผํ ๋ชฐ๋ฆฌ๋ธ๋ด๊ณผ ๋ชฐ๋ฆฌ๋ธ๋ด ํํฉ๋ฌผ๋ค์ ์ฆ์ฐฉํ๊ธฐ ์ํ์ฌ ํ๋ผ์ฆ๋ง ์์์ธต ์ฆ์ฐฉ ๋ฒ์ ์ฌ์ฉํ์ฌ ๋ฐ๋ง์ ์ฆ์ฐฉํ๊ณ ๊ดํ์ , ๊ตฌ์กฐ์ , ์ ๊ธฐ์ ํน์ฑ๋ค์ ์กฐ์ฌํ์๋ค. ํนํ Mo(CO)6๋ฅผ ์ ๊ตฌ์ฒด๋ก ์ฌ์ฉํ๋ฉด์ ๋ฐ์๋ฌผ๋ก ์ฐ์, ์์, ํฉํ์์ ๋๋ ์ด๋ค์ ์กฐํฉํ์ฌ ์ฌ์ฉํ์ฌ Mo, MoO3, MoS2๋ฅผ ์ ํ์ ์ผ๋ก ์ฆ์ฐฉํ์๋ค. ๊ฐ ๋ฐ์๋ฌผ์ ๋ฐ๋ฅธ ALD ํน์ฑ์ ์กฐ์ฌํ์๊ณ , ellipsometry, Raman spectroscopy, photoluminescence, X-ray photoelectron spectroscopy, scanning electron microscopy๋ฅผ ์ฌ์ฉํ์ฌ ๊ฐ ๋ฐ์๋ฌผ ์กฐํฉ๊ณผ ์ฑ์ฅ ์กฐ๊ฑด์ ๋ฐ๋ฅธ ๋ฐ๋ง์ ํน์ฑ์ ํ๊ฐ ํ์๋ค. ๋ํ์ฌ ๋ชฐ๋ฆฌ๋ธ๋ด ํํฉ๋ฌผ๋ฟ๋ง ์๋๋ผ ๊ธ์์ธ Mo์ ์์ ๊ตฌ์ฑ์์๋ก์์ ์ ์ฌ์ฑ ๋ํ ํจ๊ป ์ดํด๋ณด์๋ค.|In recent years, transition metal oxides and dichalcogenides have received much attention due to its attractive properties for a wide range of applications. Among these materials molybdenum compounds were studied most initiatively and achieved considerable progress. Meanwhile, metallic molybdenum is also widely used as conducting materials in many electronic applications. In this study, therefore, plasma-enhanced atomic layer deposition (PEALD) was employed to form the uniform Mo, MoO3, MoS2 thin films. Optical, structural and electronic properties of metallic molybdenum and its compounds thin films have been investigated. Especially, When Mo(CO)6 was used as the precursor, different kinds of plasma gases such as O2, H2, H2S and their combinations for reactant resulted in selective growth of Mo, MoO3, MoS2, respectively. Basically, the ALD characteristics with each reactant were studied. The ellipsometry, Raman spectroscopy, photoluminescence, X-ray photoelectron spectroscopy, scanning electron microscopy were used to examine film characteristics according to the different precursor combinations and growth conditions. Furthermore, the potential of metallic Mo as well as Mo compounds for device component was investigated.List of Tables โ
ฒ
List of Figures โ
ณ
Abstract โ
ต
1. ์ ๋ก 1
2. ์ด๋ก ์ ๋ฐฐ๊ฒฝ
2.1 Atomic Layer Deposition
2.1.1 Principle of Atomic Layer Deposition 4
2.1.2 Adsorption in ALD 6
2.1.3 Process of Atomic Layer Deposition 8
2.1.4 Characteristic of Atomic Layer Deposition 9
2.1.5 Merit of Atomic Layer Deposition 11
2.1.6 Plasma-enhanced Atomic Layer Deposition 12
2.2 Molybdenum compound
2.2.1 Molybdenum 13
2.2.2 Molybdenum Trioxide 14
2.2.3 Molybdenum Disulfide 16
2.3 Characterization Principles
2.3.1 Ellipsometer 18
2.3.2. X-ray Diffraction (XRD) 19
2.3.3. Field Emission Scanning Electron Microscopy (FE-SEM) 21
2.3.4. Raman spectroscopy 23
2.3.5. X-ray photoelectron spectroscopy (XPS) 25
2.3.6. Atomic Force Microscope (AFM) 27
2.3.7. Four-point Probe 29
3. ์คํ์ฅ์น ๊ตฌ์ฑ ๋ฐ ๋ฐฉ๋ฒ
3.1 PEALD System 31
3.2 Precursor 33
3.3 Atomic Layer Deposition of Mo, MoO3 and MoS2 thin Film 34
3.4 Characterization of Mo, MoO3 and MoS2 thin films 36
4. ์คํ ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ
4.1 ALD Characteristics 37
4.2 Film Analysis 42
5. ๊ฒฐ๋ก 49
์ฐธ๊ณ ๋ฌธํ 50Maste
์ฐ๋ น์ ๋ฐ๋ฅธ ๊ฐ ์ฃผํ๊ฐ๋ง์ธ์ ๋ฉด์ญ์กฐ์งํํ์ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :์์ํ๊ณผ,2008.2.Docto
๋จํด ๊ด์๋ง ์๋ถํด์ญ์ ๋ถ์ ๋ฌผ์ง ํจ๋๊ณผ ์ ๋์ ๊ดํ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :ํด์ํ๊ณผ,1997.Maste
1880๋ ๋ ํ๋ฐ ๋ฉ์ด์ง ์ผ๋ณธ์ ์ ์ ๋ด๋ก ๊ณต๊ฐ : ์ผ๋ง๋ชจํ ์ฃผ์ค์ผ(ๅฑฑๆฌๅฟ ่ผ)์ ใ์ผ๋ณธ๊ตฐ๋น๋ก ใ(ๆฅๆฌ่ปๅ่ซ)์ ์ค์ฌ์ผ๋ก
ใ๋์ฟ์์ฌํ์ ๋ฌธใ(ๆฑไบฌๆๆฅๆฐ่)์ 1894๋
6์ 8์ผ ์ 1๋ฉด ใ์ฌ๊ณ ใ(็คพๅ)๋ฅผ ํตํด ์กฐ์ ์ ๊ฒฝ๋ณด(่ญฆๅ ฑ)๊ฐ ์ ์ ๊ธ๋ฐํด์ ธ ์๋ด(ๆๆพน)ํ ํ์ค์ด ๋ฐ์ผํ๋ก ๊ฒฝ์ฑ์ ์จ ํ๋์ ๋ฎ์ผ๋ ค๊ณ ํ๋ ์ฌ์ ์ผ๋ง๋ชจํ ์ฃผ์ค์ผ(ๅฑฑๆฌๅฟ ่ผ)๋ฅผ ํนํํ์ฌ๋ํ๋น์ ๋ณ๋์ ๋ฌผ๋ก ์ด๊ณ ๊ธฐํ ํฌ๊ณ ์์ ์ ์ธ๋ผ ํ๋๋ผ๋ ์ง๊ธ๋ณด๋ค ํ์ธต ์ ์ธ๊ฐ ๋ช
ํํ ํ๊ณ ์ ํ๋ค๊ณ ๋ฐํ๋ค. ๋ํ๋๋ฏผ๊ตฐ์ ์ ์ฃผ์ฑ ์ ๋ น(5์31์ผ)๊ณผ ์ฒญ์ ์์ฐ๋ง ํ๋ณ(6์ 6์ผ)์ผ๋ก ๊ธด๋ฐํด์ง ์ํฉ์ ๋ํ ์ ์ํ ๋์์ด์๋ค.ใ์์ฌํ์ ๋ฌธใ์ ์ 1ํนํ์ ์ผ๋ง๋ชจํ ์ฃผ์ค์ผ๋ 1894๋
6์ 6์ผ ์คํ 5์์ ์ค์ฌ์นด๋ฅผ ์ถ๋ฐํ์ฌ 10์ผ ์ค์ 1์ ์ธ์ฒํญ์ ๋์ฐฉํ๋ค. ์ด๋ ์ฒญ์ผ์
์๊ธฐ 66๊ฐ ์ ๋ฌธ์ฌ์์ ํ๊ฒฌํ 114๋ช
์ ์ข
๊ตฐ๊ธฐ์ ๊ฐ์ด๋ฐ ๊ฐ์ฅ ๋น ๋ฅธ ๋์์ด์๋ค. ์ผ๋ณธ๊ตฐ ์ ๋ฐ๋๊ฐ 6์ 6์ผ ์คํ ์ถ๋ฐํ์ฌ 12์ผ ์คํ ์ธ์ฒ์ ๋์ฐฉํ ๊ฒ์ ๋น๊ฒฌ๋ ์ ๋๋ก ์ ์ํ ๊ฒ์ด์๋ค