28 research outputs found

    Applications of the Comprehensive Rural Village Development Project and Transportation Accessibility

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ๋†๊ฒฝ์ œ์‚ฌํšŒํ•™๋ถ€(์ง€์—ญ์ •๋ณด์ „๊ณต), 2021. 2. ์ด์„ฑ์šฐ.The purpose of this research is to propose pragmatic policy evaluation models with scientific rigor and to empirically analyze the effectiveness of large-scale public policies implemented in rural areas of South Korea. The impacts of two policies, the Comprehensive Rural Village Development Project (CRVDP) and the improved transportation accessibility, on agricultural income are analyzed from the ex-post standpoint applying quantitative policy evaluation methods. This dissertation is composed of three empirical essays. In the first essay, the impact of the CRVDP on agricultural income is analyzed using a quasi-experimental research design. The Heckman selection model was used to overcome selection bias, and the Blinder-Oaxaca decomposition method was employed to estimate the causal impact of the CRVDP. The results revealed that the project had a positive impact on raising farm households agricultural income. A higher probability of making agricultural income was found in the project implemented areas vis-ร -vis project not-implemented areas and in the period after the project implementation vis-ร -vis period before the project implementation. The second essay attempts to analyze the impact of the CRVDP on agricultural income by sub-groups of rural population. The analysis was conducted by applying the propensity score matching and the double cohort model developed from the age-period-cohort framework. The results find that young farmers in their early-career stage experienced a significant increase in the probability of making a higher agricultural income with the implementation of the CRVDP. On the other hand, significant effect was not visible for the cohorts of middle-aged and elderly farmers at all experience levels. The last essay explores the benefits of transportation infrastructural investments to the agricultural sector and rural areas. The paper examines the impact of changes in transportation accessibility over the course of 2005 to 2015 on agricultural income. The impact was analyzed from both micro- and macro-levels of farm households and rural autonomies utilizing the multilevel model and the spatial econometrics model. According to the results, a positive association was found in 2005, but the effect turned negative starting in 2010 which suggest that public investments in transportation accessibility had a meager or negative impact on agricultural income. There has been a rising call to come up with evidence-based recommendations employing scientifically credible evaluation methods in the public sector. Under this context, this research presents pragmatic approaches to policy evaluation for using credible secondary data. In this research, practical yet rigorous policy impact evaluation methods were applied to Koreas rural sector where evaluation of policies using rigorous scientific methods remains relatively limited.๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ์ฒด๊ณ„์ ์ด๊ณ  ๊ณผํ•™์ ์ธ ์ •์ฑ…ํ‰๊ฐ€๋ชจํ˜•์„ ๊ตฌ์ถ•ํ•˜๊ณ , ์šฐ๋ฆฌ๋‚˜๋ผ ๋†์ดŒ์ง€์—ญ์—์„œ ์‹œํ–‰๋œ ๋Œ€๊ทœ๋ชจ ๊ณต๊ณต์ •์ฑ…์˜ ํšจ๊ณผ์„ฑ์„ ์‹ค์ฆ์ ์œผ๋กœ ๋ถ„์„ํ•˜๋Š” ๋ฐ์— ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋†์ • ์ „ํ™˜๊ธฐ์— ์‹œํ–‰๋œ ๋Œ€ํ‘œ์  ๋†์ดŒ์ •์ฑ…์ธ ๋†์ดŒ๋งˆ์„์ข…ํ•ฉ๊ฐœ๋ฐœ์‚ฌ์—…๊ณผ ๊ตํ†ตSOC ํˆฌ์ž์— ๋”ฐ๋ฅธ ๊ตํ†ต์ ‘๊ทผ์„ฑ ๊ฐœ์„ ์ด ๋†์—…์†Œ๋“ ์ฆ์ง„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ •๋Ÿ‰์  ํ‰๊ฐ€๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ์‚ฌํ›„์ ์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ 3๊ฐœ์˜ ์‹ค์ฆ๋ถ„์„์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์‹ค์ฆ๋ถ„์„์—์„œ๋Š” ๊ฐ€์šฉ์ž๋ฃŒ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ํ—คํฌ๋งŒ์„ ๋ณ„๋ชจํ˜•(Heckman Selection Model)์„ ์ด์šฉํ•ด ์„ ํƒํŽธ์˜๋ฅผ ๋ณด์ •ํ•˜๊ณ , ํ•ด์ฒด๊ธฐ๋ฒ•(Decomposition Method)์„ ํ™œ์šฉํ•˜์—ฌ ๋†์ดŒ๋งˆ์„์ข…ํ•ฉ๊ฐœ๋ฐœ์‚ฌ์—… ์‹œํ–‰์—๋”ฐ๋ฅธ ๋†์—…์†Œ๋“ ์ฆ๋Œ€ํšจ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ ์‚ฌ์—…์‹œํ–‰์ง€์—ญ์€ ๋ฏธ์‹œํ–‰์ง€์—ญ์— ๋น„ํ•ด ๋†์—…์†Œ๋“ ์ฆ๋Œ€ํšจ๊ณผ๊ฐ€ ์กด์žฌํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์‚ฌ์—…์‹œํ–‰์ง€์—ญ์€ ์‚ฌ์—…์‹œํ–‰ ์ด์ „๋ณด๋‹ค ๋†์—…์†Œ๋“์ด ์ฆ๊ฐ€ํ•˜์—ฌ ์ •์ฑ…ํšจ๊ณผ๊ฐ€ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ์‹ค์ฆ๋ถ„์„์€ ์„ฑํ–ฅ์ ์ˆ˜๋งค์นญ(Propensity Score Matching)๊ณผ APC(Age-Period-Cohort) ๋ชจํ˜•์— ๊ธฐ์ดˆํ•œ ์ด์ค‘์ฝ”ํ˜ธํŠธ ๋ชจํ˜•(Double Cohort Model)์„ ์ ์šฉํ•˜์—ฌ ๋†์—…์ธ์˜ ์—ฐ๋ น๊ณผ ์˜๋† ๊ฒฝ๋ ฅ์— ์˜ํ•ด ๋ถ„๋ฅ˜๋œ ์ฝ”ํ˜ธํŠธ๋ณ„๋กœ ๋†์ดŒ๋งˆ์„์ข…ํ•ฉ๊ฐœ๋ฐœ์‚ฌ์—…์˜ ๋†์—…์†Œ๋“ ์ฆ์ง„ ํšจ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ ๋†์ดŒ๋งˆ์„์ข…ํ•ฉ๊ฐœ๋ฐœ์‚ฌ์—…์€ ๊ฒฝ๋ ฅ ์ดˆ๊ธฐ๋‹จ๊ณ„ ์ฒญ๋…„ ๋†์—…์ธ์˜ ๊ณ ์†Œ๋“ ๊ฐ€๋Šฅ์„ฑ์„ ๋†’์ธ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚œ ๋ฐ˜๋ฉด, ์ค‘๋…„ ๋ฐ ๋…ธ๋…„๊ธฐ ๋†์—…์ธ ์ฝ”ํ˜ธํŠธ์— ์žˆ์–ด์„œ๋Š” ๊ทธ ํšจ๊ณผ๊ฐ€ ๋ฏธ๋ฏธํ–ˆ๋˜ ๊ฒƒ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ์„ธ ๋ฒˆ์งธ ์‹ค์ฆ๋ถ„์„์€ ๋‹ค์ธต๋ชจํ˜•(Multilevel Model)๊ณผ ๊ณต๊ฐ„๊ณ„๋Ÿ‰๋ชจํ˜•(Spatial Econometrics Model)์„ ํ™œ์šฉํ•˜์—ฌ ๊ตํ†ตSOC ํˆฌ์ž์— ์˜ํ•œ ๊ตํ†ต์ ‘๊ทผ์„ฑ ๊ฐœ์„ ์ด ๋†์—…์†Œ๋“์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ฏธ์‹œ์  ์ˆ˜์ค€์˜ ๋†๊ฐ€๋‹จ์œ„์™€ ๊ฑฐ์‹œ์  ์ˆ˜์ค€์˜ ์ง€์—ญ๋‹จ์œ„ ์ธก๋ฉด์—์„œ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด๋ฉด 2005๋…„์—๋Š” ๊ตํ†ต์ ‘๊ทผ์„ฑ์˜ ๋ณ€ํ™”๊ฐ€ ๋†์—…์†Œ๋“์— ๊ธ์ •์ ์ธ ๋ฐฉํ–ฅ์œผ๋กœ ์ž‘์šฉํ•œ ๊ฒƒ์œผ๋กœ ๋ถ„์„๋˜์—ˆ์œผ๋‚˜, 2010๋…„ ์ดํ›„์—๋Š” ๋ณ„๋‹ค๋ฅธ ์˜ํ–ฅ์ด ์—†๊ฑฐ๋‚˜ ๋ถ€์ •์ ์ธ ๋ฐฉํ–ฅ์œผ๋กœ ์ž‘์šฉํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ณต๊ณต์ •์ฑ…์˜ ์ค‘์žฅ๊ธฐ์  ์„ฑ๊ณผ ๋ฐ ์žฌ์ • ํˆฌ์ž… ํšจ์œจ์„ฑ ํ‰๊ฐ€์— ๋Œ€ํ•œ ๊ฐ๊ด€์ ์ด๊ณ  ๊ณผํ•™์ ์ธ ๋ถ„์„์ด ์š”๊ตฌ๋˜๋Š” ์ƒํ™ฉ์—์„œ ์ด์šฉ ๊ฐ€๋Šฅํ•œ ๊ฐ๊ด€์  ํ†ต๊ณ„์ž๋ฃŒ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ฒด๊ณ„์ ์ด๊ณ  ์ •๋Ÿ‰์ ์ธ ํ‰๊ฐ€๋ชจํ˜• ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜์˜€๋‹ค๋Š”๋ฐ ์ผ์ฐจ์  ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค. ๋˜ํ•œ, ๊ธฐ์ดˆํ†ต๊ณ„ ๋ฐ ์ •์„ฑ์  ์ง€ํ‘œ ์œ„์ฃผ์˜ ์ •์ฑ…ํ‰๊ฐ€๊ฐ€ ์ฃผ๋ฅผ ์ด๋ฃจ์—ˆ๋˜ ๋†์ดŒ์ •์ฑ… ๋ถ€๋ฌธ์— ์ •๋Ÿ‰์  ์‚ฌํ›„ํ‰๊ฐ€๋ชจํ˜•์„ ์ ์šฉํ•˜์—ฌ ํ‰๊ฐ€๊ฒฐ๊ณผ์˜ ํ†ต๊ณ„์  ํƒ€๋‹น์„ฑ์„ ์ œ๊ณ ํ•˜์˜€๋‹ค๋Š” ์ ์—์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค.Chapter 1. Introduction 1 1.1. Recent Trends in Rural Korea 1 1.2. Towards Evidence-based Policymaking in the Rural Sector 6 1.3. Purpose and Scope of the Research 8 1.4. Structure of the Research 10 Chapter 2. Koreas Rural Development Policies 13 2.1. A Chronological Overview 13 2.2. The Comprehensive Rural Village Development Project 17 Chapter 3. The Impact of the Comprehensive Rural Village Development Project on Agricultural Income 21 3.1. Introduction 21 3.2. Methodological Challenges in Counterfactual Analysis 22 3.3. Methodology 24 3.4. Data and Variables 34 3.5. Empirical Results 37 3.6. Conclusion 54 Chapter 4. Decoupling the Impact of the Comprehensive Rural Village Development Project on Agricultural Income by Birth and Experience Cohorts 57 4.1. Introduction 57 4.2. Literature Review 58 4.3. Conceptual Framework 63 4.4. Theoretical Framework: The Double Cohort Model 67 4.5. Data and Variables 70 4.6. Methodology 73 4.7. Empirical Results 79 4.8. Conclusion 91 Chapter 5. Micro- and Macro-Level Investigations of the Impact of Transportation Infrastructure on Agricultural Income, 2005-2015 93 5.1. Introduction 93 5.2. Literature Review 95 5.3. Data and Variables 102 5.4. Methodology 107 5.5. Empirical Results 112 5.6. Conclusion 127 Chapter 6. Concluding Remarks 129 6.1. Summary of Findings and Policy Implications 129 6.2. Limitations of the Studies and Future Research 135 Bibliography 138 Appendix 154 Abstract in Korean 158Docto

    Determination of goitrogenic metabolites in the serum of male Wistar Rat fed structurally different glucosinolates.

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‹ํ’ˆ์˜์–‘ํ•™๊ณผ, 2014. 8. ๊ถŒํ›ˆ์ •.๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ (glucosinolate)๋Š” ์‹ญ์žํ™”๊ณผ ์‹๋ฌผ์— ๋‹ค๋Ÿ‰ ํ•จ์œ ๋˜์–ด ์žˆ๋Š” ์ด์ฐจ๋Œ€์‚ฌ์‚ฐ๋ฌผ๋กœ ๊ฐ‘์ƒ์„ ์— ๋ถ€์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ์˜ ์ฒด๋‚ด ํก์ˆ˜์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์‚ดํŽด๋ณด๋ฉด ๋Œ€๋ถ€๋ถ„์ด organic isothiocyanates๋ฅผ ๊ฒฝ๊ตฌํˆฌ์—ฌ ํ•˜๊ฑฐ๋‚˜, ์‹๋ฌผ์ฒด ๋‚ด myrosinase์™€ ํ•จ๊ป˜ ๋‹ค์–‘ํ•œ ๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ๊ฐ€ ํฌํ•จ๋œ ์‹๋ฌผ์ฒด๋ฅผ ํˆฌ์—ฌํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ๊ฐœ๋ณ„์  ๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ์˜ ํก์ˆ˜ ๋ฐ ๋Œ€์‚ฌ๋ฅผ ์˜ˆ์ธกํ•˜๋Š”๋ฐ ์–ด๋ ค์›€์ด ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋žซ๋“œ (rat)์— ์ˆœ์ˆ˜ํ•˜๊ฒŒ ๋ถ„๋ฆฌํ•œ 4์ข…์˜ ๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ (sinigrin, progoitrin, glucoerucin, glucotropaeolin)๋ฅผ ๊ฒฝ๊ตฌํˆฌ์—ฌ ํ•˜์˜€์œผ๋ฉฐ, ๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ๊ฐ€ ๋ฐ˜๊ฐ‘์ƒ์„  ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋ถ„ํ•ด์‚ฐ๋ฌผ๋กœ ๋Œ€์‚ฌ๋˜๋Š”์ง€ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด thiocyanate ion, cyanide ion, organic isothiocyanates, organic nitriles, organic thiocyanates์˜ ๋†๋„๋ฅผ ํ˜ˆ์ฒญ์—์„œ ์ธก์ •ํ•˜์˜€๋‹ค. Thiocyanate ion์€ ๋น„์ƒ‰๋ฒ•์œผ๋กœ ์ธก์ •ํ•˜์˜€์œผ๋ฉฐ, cyanide ion์€ CI-GC-MS๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ธก์ •ํ•˜์˜€๋‹ค. Organic isothiocyanates์™€ ๊ทธ ๋Œ€์‚ฌ์ฒด๋Š” cyclocondensation assay๋กœ ์ธก์ •ํ•˜์˜€๋‹ค. Organic nitriles์™€ organic thiocyanates๋Š” EI-GC-MS๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ธก์ •ํ•˜์˜€๋‹ค. Progoitrin๊ตฐ์„ ์ œ์™ธํ•œ ๋ชจ๋“  ๊ตฐ์—์„œ ๋Œ€์‚ฌ์‚ฐ๋ฌผ ์ค‘ thiocyanate ion์˜ ๋†๋„๊ฐ€ ๊ฐ€์žฅ ๋†’๊ฒŒ ์ธก์ •๋˜์—ˆ๋‹ค. Progoitrin๊ตฐ์—์„œ๋Š” organic isothiocyanates (goitrin)๊ฐ€ ๊ฐ€์žฅ ๋†’์€ ๋†๋„๋กœ ๊ฒ€์ถœ๋˜์—ˆ๋‹ค. Glucoerucin๊ตฐ์—์„œ๋Š” ๊ฐ‘์ƒ์„ ์ข…๋ฐœ์ƒ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋ฌผ์งˆ์˜ ์ƒ์„ฑ์ด ์ƒ๋Œ€์ ์œผ๋กœ ์ ์€ ํŽธ์ด์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ธก์ •ํ•œ ํˆฌ์—ฌ 5์‹œ๊ฐ„ ๋‚ด ๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ๋Š” ๋Œ€๋ถ€๋ถ„ ์ตœ์ข…๋ถ„ํ•ด์‚ฐ๋ฌผ์ธ thiocyanate ion์œผ๋กœ ๋Œ€์‚ฌ๋˜๋Š” ๊ฒƒ์ด ํ™•์ธ๋˜์—ˆ์œผ๋ฉฐ, ๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ ๊ณ์‚ฌ์Šฌ ๊ตฌ์กฐ์— ๋”ฐ๋ผ thiocyanate ion ์ƒ์„ฑ๋Ÿ‰์ด ๋‹ค์–‘ํ•œ ๊ฒƒ์œผ๋กœ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ๊ณ์‚ฌ์Šฌ ๊ตฌ์กฐ๊ฐ€ ์•ˆ์ •ํ•œ ํƒ„์†Œ ์–‘์ด์˜จ์„ ํ˜•์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฝ์šฐ์— ๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ์˜ ๋ถ„ํ•ด๊ฐ€ ์ด‰์ง„๋˜์–ด ๊ฐ‘์ƒ์„ ์ข…๋ฐœ์ƒ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” thiocyanate ion์˜ ์ƒ์„ฑ ๋˜ํ•œ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์‹๋ฌผ์ฒด ๋‚ด myrosinase์˜ ์ž‘์šฉ ์—†์ด ๊ฐ‘์ƒ์„ ์ข…๋ฐœ์ƒ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋Œ€์‚ฌ์ฒด๊ฐ€ ํ˜•์„ฑ๋  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, ์กฐ๋ฆฌ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์‹๋ฌผ์ฒด ๋‚ด myrosinase ๋ถˆํ™œ์„ฑํ™”๋Š” ์‹ญ์žํ™”๊ณผ ์‹๋ฌผ์— ํฌํ•จ๋œ ๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ์˜ ๋ฐ˜์˜์–‘์  ํšจ๊ณผ์— ์˜ํ–ฅ์„ ์ฃผ์ง€ ์•Š์„ ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค. ํŠนํžˆ sinigrin๊ณผ progoitrin์˜ ๊ฒฝ์šฐ ๊ตญ๋‚ด ์„ญ์ทจ๋Ÿ‰์ด ๋†’์€ ํŽธ์ธ๋ฐ ๊ฐ€๊ณต์กฐ๊ฑด์„ ๊ฑฐ์นœ ํ›„ ์„ญ์ทจ ์‹œ ์—ฌ์ „ํžˆ ๊ฐ‘์ƒ์„ ์ข… ๋ฐœ์ƒ ๋ฌผ์งˆ์˜ ์ƒ์„ฑ ๊ฐ€๋Šฅ์„ฑ์ด ์ƒ๋‹นํ•˜๋ฏ€๋กœ, ์ด๋“ค์— ์˜ํ•œ ๋ฐ˜๊ฐ‘์ƒ์„  ์˜ํ–ฅ์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ๊ฐ€๊ณต ๋ฐ ์กฐ๋ฆฌ๋ฒ• ๊ฐœ์„ ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•  ๊ฒƒ์ด๋‹ค.Glucosinolates (GLSs) are abundant in cruciferous vegetables and reported to have anti thyroidal effects. Four GLSs (sinigrin, progoitrin, glucoerucin, and glucotropaeolin) were administered orally to rats, and the breakdown products of GLSs (GLS-BPs: thiocyanate ions, cyanide ions, organic isothiocyanates, organic nitriles, and organic thiocyanates) were measured in serum. Thiocyanate ions were measured by colorimetric method, and cyanide ions were measured with CI-GC-MS. Organic isothiocyanates and their metabolites were measured with the cyclocondensation assay. Organic nitriles and organic thiocyanates were measured with EI-GC-MS. In all treatment groups except for progoitrin, thiocyanate ions were the highest among the five GLS-BPs. In the progoitrin treated group, a high concentration of organic isothiocyanates (goitrin) was detected. In the glucoerucin treated group, a relatively low amount of goitrogenic substances was observed. The metabolism to thiocyanate ions happened within five hours of the administration, and the distribution of GLSs varied with the side chain. GLSs with side chains that can form stable carbocation seemed to facilitate the degradation reaction and produce a large amount of goitrogenic thiocyanate ions. Because goitrogenic metabolites can be formed without myrosinase, the inactivation of myrosinase during cooking would have no effect on the anti-nutritional effect of GLSs in cruciferous vegetables.๊ตญ๋ฌธ์ดˆ๋ก ๋ชฉ์ฐจ List of tables List of figures โ… . ์„œ๋ก  โ…ก. ๋ฌธํ—Œ๊ณ ์ฐฐ โ…ก.1. ๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ์˜ ํŠน์„ฑ โ…ก.2. ๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ ๋ถ„ํ•ด์‚ฐ๋ฌผ์˜ ์ƒ์„ฑ โ…ก.3. ๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ์˜ ์ฒด๋‚ด ๋ถ„ํ•ด ๋ฐ ํก์ˆ˜ โ…ก.4. ๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ์˜ ์ฒด๋‚ด ํšจ๊ณผ โ…ข. ์žฌ๋ฃŒ ๋ฐ ๋ฐฉ๋ฒ• โ…ข.1. ์‹คํ—˜ ์žฌ๋ฃŒ โ…ข.1.1. ์‹œ๋ฃŒ โ…ข.1.2. ์‹œ์•ฝ ๋ฐ ๊ธฐ๊ธฐ โ…ข.2. ์‹คํ—˜ ๋ฐฉ๋ฒ• โ…ข.2.1. ๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ์˜ ์ถ”์ถœ ๋ฐ ๋ถ„๋ฆฌ โ…ข.2.2. ๋™๋ฌผ์‹คํ—˜ โ…ข.2.3. ํ˜ˆ์ฒญ ๋‚ด ๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ ๋Œ€์‚ฌ์‚ฐ๋ฌผ ๋ถ„์„ โ…ข.2.3.1. Thiocyanate ion ์ •๋Ÿ‰ ๋ถ„์„ โ…ข.2.3.2. Cyanide ion ์ •๋Ÿ‰ ๋ถ„์„ โ…ข.2.3.3. Organic isothiocyanates ์ •๋Ÿ‰ ๋ถ„์„ โ…ข.2.3.4. Organic nitriles, organic thiocyanates ์ •๋Ÿ‰ ๋ถ„์„ โ…ข.2.4. ๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ ํˆฌ์—ฌ์— ๋”ฐ๋ฅธ ๊ฐ‘์ƒ์„  ํ˜ธ๋ฅด๋ชฌ ๋ณ€ํ™” โ…ข.2.5. ํ˜ˆ์•ก ์ƒํ™”ํ•™์  ๊ฒ€์‚ฌ โ…ข.2.6. ํ†ต๊ณ„๋ถ„์„ โ…ฃ. ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ โ…ฃ.1. ๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ์˜ ์ถ”์ถœ ๋ฐ ๋ถ„๋ฆฌ โ…ฃ.2. ํ˜ˆ์ฒญ ๋‚ด ๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ ๋Œ€์‚ฌ์‚ฐ๋ฌผ ๋ถ„์„ โ…ฃ.3. ๊ธ€๋ฃจ์ฝ”์‹œ๋†€๋ ˆ์ดํŠธ ํˆฌ์—ฌ์— ๋”ฐ๋ฅธ ๊ฐ‘์ƒ์„  ํ˜ธ๋ฅด๋ชฌ ๋ณ€ํ™” โ…ฃ.4. ์žฅ๊ธฐ ์ค‘๋Ÿ‰ ์ธก์ • ๋ฐ ํ˜ˆ์•ก ์ƒํ™”ํ•™์  ๊ฒ€์‚ฌ โ…ค. ์š”์•ฝ ๋ฐ ๊ฒฐ๋ก  โ…ฅ. ์ฐธ๊ณ ๋ฌธํ—Œ AbstractMaste

    ์žฌ์กฐํ•ฉ ํšจ๋ชจ๋ฅผ ์ด์šฉํ•œ ํฌ๋„๋‹น๊ณผ ๊ฐˆ๋ฝํ† ์Šค๋กœ๋ถ€ํ„ฐ 2,3-butanediol ์ƒ์‚ฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ˜‘๋™๊ณผ์ • ๋ฐ”์ด์˜ค์—”์ง€๋‹ˆ์–ด๋ง์ „๊ณต, 2016. 2. ์„œ์ง„ํ˜ธ.2,3-Butanediol (2,3-BD)๋Š” ์‚ฐ์—…์  ํ™œ์šฉ๋„๊ฐ€ ๋†’์€ ํ”Œ๋žซํผ ํ™”ํ•™ ์†Œ์žฌ์ด๋‹ค. 2,3-BD๋Š” ํ™”ํ•™์  ์ƒ์‚ฐ์ด ๊ฐ€๋Šฅํ•˜์ง€๋งŒ ์œ ๊ฐ€ ๋ณ€๋™๋ฌธ์ œ์™€ ์ง€๊ตฌ์˜จ๋‚œํ™” ๋ฌธ์ œ๋กœ ์ธํ•ด ์ตœ๊ทผ ๋ฐ”์ด์˜ค ๊ธฐ์ˆ ์ด ๊ฐœ๋ฐœ๋จ์— ๋”ฐ๋ผ ์ƒ๋ฌผ๊ณตํ•™์ ์œผ๋กœ ์ƒ์‚ฐ์ด ์ฃผ๋ชฉ ๋ฐ›๊ณ  ์žˆ๋‹ค. 2,3-BD์˜ ์ƒ๋ฌผ๊ณตํ•™์  ์ƒ์‚ฐ์—๋Š” ์ฃผ๋กœ ๋ฐ•ํ…Œ๋ฆฌ์•„๊ฐ€ ์‚ฌ์šฉ๋˜๋Š”๋ฐ ๊ณ  ์ˆ˜์œจ๋กœ 2,3-BD๋ฅผ ์ƒ์‚ฐํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ์ด๋“ค ๋Œ€๋ถ€๋ถ„์ด ๋ณ‘์›์„ฑ ๋ฐ•ํ…Œ๋ฆฌ์•„๋กœ ๋ถ„๋ฅ˜๋˜๊ธฐ ๋•Œ๋ฌธ์— ์•ˆ์ „๊ณผ ์‚ฐ์—…ํ™” ์ธก๋ฉด์—์„œ ๋Œ€๋Ÿ‰ ์ƒ์‚ฐ ๊ณต์ • ๊ตฌ์ถ•์ด ์–ด๋ ต๋‹ค. ๊ทธ ๋Œ€์•ˆ์œผ๋กœ GRAS (Generally Recognized As Safety) ๋ฏธ์ƒ๋ฌผ๋กœ์„œ ์•ˆ์ „ํ•˜๋‹ค๊ณ  ์•Œ๋ ค์ง„ Saccharomyces cerevisiae๋ฅผ ์ด์šฉํ•œ 2,3-BD ์ƒ์‚ฐ์— ์ฃผ๋ชฉํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ S. cerevisiae๋Š” ์ž์—ฐ ์ƒํƒœ์—์„œ๋Š” 2,3-BD๋ฅผ ๊ฑฐ์˜ ์ƒ์‚ฐํ•˜์ง€ ๋ชปํ•˜๊ณ  ์—ํƒ„์˜ฌ์„ ์ฃผ๋กœ ์ƒ์‚ฐํ•˜๊ธฐ์— ๊ณ ํšจ์œจ์˜ 2,3-BD๋ฅผ ์ƒ์‚ฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋Œ€์‚ฌ๊ณตํ•™์  ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•œ ์žฌ์กฐํ•ฉ S. cerevisiae์˜ ๊ตฌ์ถ•์ด ์š”๊ตฌ๋œ๋‹ค. ๋˜ํ•œ, ๊ฒฝ์ œ์  ์ธก๋ฉด์œผ๋กœ ๋ณผ ๋•Œ ํ•ด์–‘ ๋ฐ”์ด์˜ค๋งค์Šค๋กœ๋ถ€ํ„ฐ 2,3-BD๋ฅผ ์ƒ์‚ฐํ•˜๋Š” ๊ฒƒ์ด 2,3-BD์˜ ์ง€์† ๊ฐ€๋Šฅํ•œ ์ƒ์—…ํ™”๋ฅผ ์œ„ํ•ด ํ•ด๊ฒฐํ•ด์•ผ ํ•  ์ฃผ์š” ์—ฐ๊ตฌ ๊ณผ์ œ์ด๋‹ค. ํ•˜์ง€๋งŒ S. cerevisiae๋Š” ํ•ด์–‘ ๋ฐ”์ด์˜ค๋งค์Šค์— ๋‹ค๋Ÿ‰ ์กด์žฌํ•˜๋Š” ํฌ๋„๋‹น๊ณผ ๊ฐˆ๋ฝํ† ์˜ค์Šค๋ฅผ ๋™์‹œ์— ์†Œ๋ชจํ•˜์ง€ ๋ชปํ•˜๊ณ , ํฌ๋„๋‹น์ด ๋ชจ๋‘ ์†Œ๋ชจ๋œ ํ›„์—์•ผ ๊ฐˆ๋ฝํ† ์˜ค์Šค๊ฐ€ ์ด์šฉ๋˜๋Š” ํฌ๋„๋‹น์— ์˜ํ•œ ์ „์‚ฌ ์–ต์ œ (catabolite repression)์˜ ๋‹จ์ ์„ ๊ฐ€์ง„๋‹ค. ์„ ํ–‰์—ฐ๊ตฌ์ž์— ์˜ํ•ด S. cerevisiae์˜ ์ฃผ์š” ๋Œ€์‚ฌ ์‚ฐ๋ฌผ์ธ ์—ํƒ„์˜ฌ ์ƒ์„ฑ์„ ์–ต์ œํ•˜๊ณ ์ž pyruvate decarboxylase ํ™œ์„ฑ์ด ์™„์ „ํžˆ ์ €ํ•ด๋œ ํšจ๋ชจ (SOS2)์™€, SOS2 ๊ท ์ฃผ๋ฅผ ํฌ๋„๋‹น ๋ฐฐ์ง€์—์„œ ์ƒ์žฅ์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•˜๊ธฐ ์œ„ํ•ด ์ด๋ณผ๋ฃจ์…˜์‹œํ‚จ ํšจ๋ชจ (SOS4)๋ฅผ ์ œ์ž‘ํ•œ ๋ฐ” ์žˆ๋‹ค. ์ด๋ณผ๋ฃจ์…˜์˜ ๊ณผ์ •์—์„œ SOS4 ๊ท ์ฃผ๋Š” S. cerevisiae ๋‚ด ํฌ๋„๋‹น signal regulator์˜ ์—ญํ• ์„ ํ•˜๋Š” MTH1 ์œ ์ „์ž์˜ ์•„๋ฏธ๋…ธ์‚ฐ ์—ผ๊ธฐ์„œ์—ด์— ๋Œ์—ฐ๋ณ€์ด๊ฐ€ ๋ฐœ์ƒํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ•ด์–‘ ๋ฐ”์ด์˜ค๋งค์Šค์— ๋‹ค๋Ÿ‰ ์กด์žฌํ•˜๋Š” ํฌ๋„๋‹น๊ณผ ๊ฐˆ๋ฝํ† ์˜ค์Šค๋ฅผ ํšจ์œจ์ ์œผ๋กœ ์ด์šฉํ•˜๋„๋ก ํ•˜์—ฌ, 2,3-BD์˜ ์ƒ์‚ฐ์— ์žˆ์–ด ๋†’์€ ์ˆ˜์œจ๊ณผ ์ƒ์‚ฐ์„ฑ์„ ์–ป๋Š” ๊ฒƒ์ด ์ตœ์ข… ๋ชฉํ‘œ์ด๋‹ค. ๋จผ์ €, pyruvate decarboxylase ํ™œ์„ฑ์ด ์ €ํ•ด๋˜๊ณ  ์ด๋ณผ๋ฃจ์…˜๋˜์–ด MTH1 ์œ ์ „์ž์— ๋Œ์—ฐ๋ณ€์ด๊ฐ€ ์กด์žฌํ•˜๋Š” ๊ท ์ฃผ (SOS4)์— 2,3-BD ์ƒํ•ฉ์„ฑ ๊ฒฝ๋กœ๋ฅผ ๋„์ž…ํ•œ ๊ท ์ฃผ (BD4)์˜ ํšŒ๋ถ„์‹ ๋ฐฐ์–‘์„ ํ†ตํ•ด ํฌ๋„๋‹น๊ณผ ๊ฐˆ๋ฝํ† ์˜ค์Šค์˜ ๋™์‹œ ์†Œ๋ชจ๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ์ด ๊ฒฐ๊ณผ๊ฐ€ MTH1 ์œ ์ „์ž์˜ ๋Œ์—ฐ๋ณ€์ด์— ์˜ํ•œ ํšจ๊ณผ์ธ์ง€๋ฅผ ํ™•์ธํ•˜๊ณ ์ž ์ด๋ณผ๋ฃจ์…˜์ด ์ผ์–ด๋‚˜์ง€ ์•Š์€ ๊ท ์ฃผ (SOS2)์™€ ์ธ์œ„์ ์œผ๋กœ MTH1 ์œ ์ „์ž์— ๋Œ์—ฐ๋ณ€์ด๋ฅผ ๊ฐ€ํ•˜์—ฌ ๊ตฌ์ถ•ํ•œ ๊ท ์ฃผ (SOS2_Mth1)๋ฅผ ๋ณธ ์—ฐ๊ตฌ์— ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ด ๋‘ ๊ท ์ฃผ์— 2,3-BD ์ƒํ•ฉ์„ฑ ๊ฒฝ๋กœ๋ฅผ ๋„์ž…ํ•œ ๊ท ์ฃผ๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๊ณ , ํšŒ๋ถ„์‹ ๋ฐฐ์–‘ ๊ฒฐ๊ณผ MTH1์— ๋Œ์—ฐ๋ณ€์ด๊ฐ€ ์กด์žฌํ•˜๋Š” ๊ท ์ฃผ (BD2M)๊ฐ€ ํฌ๋„๋‹น๊ณผ ๊ฐˆ๋ฝํ† ์˜ค์Šค๋ฅผ ๋™์‹œ์— ์†Œ๋ชจํ•จ์œผ๋กœ์จ MTH1 ์™€์ผ๋“œํƒ€์ž… ๊ท ์ฃผ (BD2)์— ๋น„ํ•˜์—ฌ 2,3-BD์˜ ์ƒ์‚ฐ์„ฑ์ด ์•ฝ 41% ์ฆ๊ฐ€ํ•œ ์ˆ˜์น˜๋ฅผ ๋ณด์˜€๋‹ค. ์ด ๊ท ์ฃผ์˜ ์ •ํ™•ํ•œ ๋ฐœํšจ๋Šฅ๋ ฅ์„ ๋ณด๊ธฐ ์œ„ํ•˜์—ฌ fed-batch fermentation์„ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋‘ ๋‹น์„ ๋™์‹œ ์†Œ๋ชจํ•˜์—ฌ ์•ฝ 75.5 g/L์˜ 2,3-BD๋ฅผ ์ƒ์‚ฐํ•˜์˜€์œผ๋‚˜ ๋ฐœํšจ ํ›„๋ฐ˜๋ถ€๋กœ ๊ฐˆ์ˆ˜๋ก ๊ฐˆ๋ฝํ† ์˜ค์Šค์˜ ์†Œ๋ชจ ์†๋„๊ฐ€ ๋Š๋ ค์ง€๋Š” ์–‘์ƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ๊ฐˆ๋ฝํ† ์˜ค์Šค ์†Œ๋ชจ ์†๋„๋ฅผ ์ฆ์ง„์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๊ฐˆ๋ฝํ† ์˜ค์Šค ๋Œ€์‚ฌ๊ฒฝ๋กœ ๋‚ด์— ์กด์žฌํ•˜๋Š” 5๊ฐœ์˜ ์œ ์ „์ž๋ฅผ ๊ฐ๊ฐ ๊ณผ๋ฐœํ˜„ ์‹œ์ผœ ๊ท ์ฃผ๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ์ด๋“ค์„ ๊ฐ€์ง€๊ณ  ํšŒ๋ถ„์‹ ๋ฐฐ์–‘์„ ์ง„ํ–‰ํ•˜์˜€๊ณ , phosphoglucomutase๋ฅผ ์•”ํ˜ธํ™”ํ•˜๋Š” PGM2 ์œ ์ „์ž๋ฅผ ๊ณผ๋ฐœํ˜„ํ•œ ๊ท ์ฃผ (BD2M_PGM2)์—์„œ๋งŒ ์™€์ผ๋“œํƒ€์ž… ๊ท ์ฃผ (BD2M)์— ๋น„ํ•˜์—ฌ ์•ฝ 13% ์ฆ๊ฐ€ํ•œ ๊ฐˆ๋ฝํ† ์˜ค์Šค ์†Œ๋ชจ ์†๋„๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ด ๊ท ์ฃผ์˜ ์ •ํ™•ํ•œ ๋ฐœํšจ๋Šฅ๋ ฅ์„ ๋ณด๊ธฐ ์œ„ํ•˜์—ฌ fed-batch fermentation์„ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ์™€์ผ๋“œํƒ€์ž… ๊ท ์ฃผ์— ๋น„ํ•ด ์•ฝ 42% ์ฆ๊ฐ€ํ•œ ๊ฐˆ๋ฝํ† ์˜ค์Šค ์†Œ๋ชจ ์†๋„๋ฅผ ํ†ตํ•ด ์•ฝ 39% ์ฆ๊ฐ€ํ•œ 2,3-BD์˜ ์ƒ์‚ฐ์„ฑ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์„ธ ๋ฒˆ์งธ๋กœ, pyruvate decarboxylase ๊ฒฐ์—ฌ ํšจ๋ชจ์˜ ๋‹จ์ ์ธ ํƒ„์†Œ์›์— ์˜์กด์ ์ธ ์ƒ์žฅ ์ฒด๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ์„ ํ–‰์—ฐ๊ตฌ์ž์— ์˜ํ•ด ํ™•์ธ๋œ Candida tropicalis ์œ ๋ž˜์˜ pdc1 ์œ ์ „์ž๋ฅผ ๋„์ž…ํ•˜๊ณ , ๋ณดํšจ์†Œ ๋ถˆ๊ท ํ˜•์œผ๋กœ ์ธํ•ด ๋ถ€์‚ฐ๋ฌผ๋กœ ๊ธ€๋ฆฌ์„ธ๋กค์ด ๋‹ค๋Ÿ‰ ์ถ•์ ๋˜๋Š” ๋ฌธ์ œ์ ์„ ๋ณด์™„ํ•˜๊ณ ์ž ์„ ํ–‰์—ฐ๊ตฌ์— ์˜ํ•ด ํ™•์ธ๋œ Lactococcus lactis ์œ ๋ž˜์˜ noxE ์œ ์ „์ž๋ฅผ ๋„์ž…ํ•œ ๊ท ์ฃผ๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ์ด์ „ ๋ฐฐ์–‘์˜ ์กฐ๊ฑด๊ณผ๋Š” ๋‹ฌ๋ฆฌ ์ด ๊ท ์ฃผ (BD2M_PGM2_Ctnox)์˜ ๋ฐฐ์–‘์‹œ์—๋Š” ์™ธ๋ถ€ ํƒ„์†Œ์›์œผ๋กœ ์—ํƒ„์˜ฌ์„ ๊ณต๊ธ‰ํ•˜์ง€ ์•Š๊ณ  ์ง„ํ–‰ํ•˜์˜€๋‹ค. ํšŒ๋ถ„์‹ ๋ฐฐ์–‘ ๊ฒฐ๊ณผ, ์™€์ผ๋“œํƒ€์ž… ๊ท ์ฃผ (BD2M_PGM2)์— ๋น„ํ•˜์—ฌ ์•ฝ 19% ๊ฐ์†Œํ•œ ๊ธ€๋ฆฌ์„ธ๋กค์˜ ์ˆ˜์œจ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ํƒ„์†Œ์›์— ๋น„์˜์กด์ ์ธ ์ƒ์žฅ์ด ๊ฐ€๋Šฅํ•ด์ง์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด ๊ท ์ฃผ์˜ ์ •ํ™•ํ•œ ๋ฐœํšจ๋Šฅ๋ ฅ์„ ๋ณด๊ธฐ ์œ„ํ•˜์—ฌ fed-batch fermentation์„ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ์ตœ์ข…์ ์œผ๋กœ ์•ฝ 115.7 g/L์˜ 2,3-BD๋ฅผ ์ƒ์‚ฐํ•˜์˜€์œผ๋ฉฐ ๋ถ€์‚ฐ๋ฌผ์ธ ๊ธ€๋ฆฌ์„ธ๋กค์˜ ์ˆ˜์œจ์ด 0.08 gglycerol/gsugars๋กœ ๋งค์šฐ ๋‚ฎ์€ ์ˆ˜์น˜๋ฅผ ๋ณด์˜€๋‹ค. ๋ณธ ๋ฐœํšจ์—์„œ์˜ 2,3-BD ์ƒ์‚ฐ ์ˆ˜์œจ์€ 0.47 g2,3-BD/gsugars, 2,3-BD ์ƒ์‚ฐ์„ฑ์€ 1.75 g/L/h๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•˜์—ฌ ์žฌ์กฐํ•ฉ S. cerevisiae์ธ BD2M_PGM2_Ctnox ๊ท ์ฃผ๋Š” ํ•ด์–‘ ๋ฐ”์ด์˜ค๋งค์Šค๋กœ๋ถ€ํ„ฐ 2,3-BD๋ฅผ ํšจ์œจ์ ์œผ๋กœ ์ƒ์‚ฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ท ์ฃผ์ž„์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ์ฃผ์š”์–ด : 2,3-Butanediol, pyruvate decarboxylase, ๊ฐˆ๋ฝํ† ์˜ค์Šค, ํ•ด์–‘ ๋ฐ”์ด์˜ค๋งค์Šค, ํ˜ผํ•ฉ๋‹น ๋ฐœํšจ, mth1, phosphoglucomutase, ํฌ๋„๋‹น์— ์˜ํ•œ ์ „์‚ฌ์–ต์ œ, ๋ณดํšจ์†Œ ๋ถˆ๊ท ํ˜•2,3-Butanediol (2,3-BD) is a platform chemical with extensive industrial applications since it can be converted into other valuable chemicals by dehydration, dehydrogenation, ketalization and esterification. Especially, 1,3-butadiene, a dehydration product of 2,3-BD, is a main substance used for producing synthetic rubber. Most microbial fermentations for 2,3-BD production have been focused on pathogenic bacteria, which makes large-scale fermentations difficult in terms of safety and industrialization. As an alternative, 2,3-BD production by a GRAS (Generally Regarded As Safe) microorganism Saccharomyces cerevisiae would be suitable. Also, production of 2,3-BD from marine biomass is one of the key issues for economic viability of bio-based chemicals. Among various sugars, glucose and galactose are of special interest because they are abundant in marine biomass. One of the most important concerns in mixed sugar fermentations is the catabolite repression that represses the enzyme expression to utilize sugars other than glucose. Pyruvate decarboxylase(Pdc)-deficient S. cerevisiae (SOS2) was constructed to eliminate ethanol production. Then, the evolved SOS2 strain (SOS4) was obtained by serial cultivation in excess glucose medium for cell growth on glucose medium. Among the chromosomal mutations of the SOS4 strain, a single nucleotide polymorphism was found on the MTH1 gene which functions as a glucose signal regulator. Efficient 2,3-BD production using engineered strains capable of effective fermentation from glucose and galactose is the objective in this study. First, the 2,3-BD-producing Pdc-deficient BD4 strain with the MTH1 mutation was tested for a performance of 2,3-BD production in a batch fermentation, resulting in simultaneous utilization of glucose and galactose. Therefore, in order to evaluate if the MTH1 mutation affects the fermentation performances in a mixture of glucose and galactose, the evolved pdc-deficient strain (SOS2) and engineered strain by a point mutation on the MTH1 gene (SOS2_Mth1) were used. The SOS2 and SOS2_Mth1 strains containing the alsS gene encoding ฮฑ-acetolactate synthase and the alsD gene encoding ฮฑ-acetolactate decarboxylase both from Bacillus subtilis and overexpression of the endogenous BDH1 gene coding for 2,3-BD dehydrogenase were constructed (BD2 and BD2M) and tested for a performance of 2,3-BD production in batch fermentation under oxygen-limited conditions. The BD2M strain which is the MTH1 mutant was able to co-ferment both sugars, resulting in increased 2,3-BD productivity by 41% compared to the control strain, BD2 strain. To evaluate the fermentation aspects of the BD2M strain in a bioreactor, fed-batch fermentation was carried out to obtain 75.5 g/L of 2,3-BD by simultaneous consumption of glucose and galactose. However, in the rest of the fermentation, galactose consumption rate was substantially reduced compared with glucose consumption rate. Second, to increase galactose uptake rate in 2,3-BD production, the GAL10, GAL1, GAL7, PGM1 and PGM2 genes involved in the Leloir pathway were overexpressed into the BD2M strain. These five consutructed strains were tested for a performance of galactose consumption in batch fermentation under oxygen-limited conditions. Only the strain for overexpression of the PGM2 gene, the BD2M_PGM2 strain obtained 13% increased galactose uptake rate. Also, the BD2M_PGM2 strain resulted in 42% increased galactose uptake rate and 39% improved 2,3-BD productivity compared to the control strain, BD2M strain in a fed-batch fermentation. Finally, to decrease the accumulation of glycerol and to solve the C2-dependent growth in 2,3-BD-producing Pdc-deficient S. cerevisiae, the NADH oxidase (noxE) gene from Lactococcus lactis and the pyruvate decarboxylase 1 (pdc1) gene from Candida tropicalis were expressed in the BD2M_PGM2 strain. To test for a performance of 2,3-BD production, batch and fed-batch fermentation was carried out. Unlike other conditions of fermentations in this study, this cultivation was conducted without addition of ethanol due to expression of the pdc1 gene. The resulting strain (BD2M_PGM2_Ctnox) obtained 19% reduced yield of glycerol and was able to grow without addition of ethanol in a batch fermentation. Also, in a fed-batch fermentation, the resulting strain produced 116 g/L of 2,3-BD from glucose and galactose with a low glycerol yield (0.08 gglyerol/gsugars) with 0.47 g2,3-BD/gsugars of yield and 1.75 g/L/h of productivity in a fed-batch fermentation. These results suggested that the BD2M_PGM2_Ctnox strain is suitable for producing 2,3-BD from marine biomass for industrial applications Keywords : 2,3-butanediol, pyruvate decarboxylase (Pdc), galactose, marine biomass, mixed sugar fermentation, mth1, phosphoglucomutase (Pgm2), catabolite repression, redox balanceI. INTRODUCTION 1 1. 2,3-Butanediol 1 2. Marine biomass as feedstock 4 3. Galactose metabolism in S. cerevisiae in glucose and galactose mixed fermentation 6 4. 2,3-Butanediol production using bacteria 10 5. 2,3-Butanediol production using S. cerevisiae 14 6. 2,3-Butanediol production using pyruvate decarboxylase deficient S. cerevisiae 17 7. Research objectives 24 II. MATERIALS AND METHODS 25 1. Reagents 25 2. Strains and plasmids 26 2.1. Strains 26 2.2. Plasmids 29 3. DNA manipulation and transformation 35 3.1. Enzymes 35 3.2. Polymerase chain reaction (PCR) 35 3.3. Preparation of plasmid DNA and bacteria genomic DNA 35 3.4. Transformation of E. coli 36 3.5. Isolation of DNA fragments and DNA sequencing 37 3.6.Yeast transformation 37 4. Media and culture conditions 38 4.1. Media 38 4.2. Batch fermentations 38 4.3. Fed-batch fermentations 39 5. Analysis 41 5.1 Dry cell weight 41 5.2 Metabolite detection 41 III. RESULTS AND DISCUSSIONS 42 1. Construction of the 2,3-BD producing Pdc-deficient S. cerevisiae strain by simultaneous consumption of glucose and galactose 42 1.1. Confirmation of the effect of mutant MTH1 on co-consumption of glucose and galactose 42 1.2. Influence of glucose and galactose ratio on 2,3-BD fermentation by the BD2M strains 48 1.3. Fed-batch fermentation of the BD2M strain in glucose and galactose mixed sugars 51 2. Overexpression of galactose metabolic enzymes to increase galactose uptake rate in 2,3-BD poroduction 54 3. Expression of L. lactis noxE and C. tropicalis pdc1 in the Pdc-deficient S. cerevisiae 60 IV. CONCLUSIONS 67 V. REFERENCES 69 ๊ตญ ๋ฌธ ์ดˆ ๋ก 80Maste

    ์ง€๊ตฌ๋‹จ์œ„๊ณ„ํš์—์„œ์˜ ์šฉ์ ๋ฅ  ์ธ์„ผํ‹ฐ๋ธŒ ์‹œํ–‰์— ๊ด€ํ•œ ์—ฐ๊ตฌ : ๋งˆํฌ ๋„์‹œ์„ค๊ณ„์ง€๊ตฌ์™€ ์•ฝ์ˆ˜ ์ƒ์„ธ๊ณ„ํš๊ตฌ์—ญ์„ ์‚ฌ๋ก€๋กœ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ํ™˜๊ฒฝ๋Œ€ํ•™์› :ํ™˜๊ฒฝ๊ณ„ํšํ•™๊ณผ ๋„์‹œ ๋ฐ ์ง€์—ญ๊ณ„ํš์ „๊ณต,2001.Maste

    Ag/C3N4 ๊ด‘์ด‰๋งค๋ฅผ ์ด์šฉํ•œ ๋ฉ”ํ‹ธ๋ฉ”๋ฅด์บ…ํƒ„์˜ ์„ ํƒ์  ์ œ๊ฑฐ ๋ฐ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ๊ทœ๋ช…

    No full text
    MasterIn general, air pollutants such as volatile organic compounds (VOCs) are not degraded by the CN based catalysts generating O2- radicals, but only by WO3 based catalysts generating OH radicals. In this study, we found that CN based catalysts can selectively degrade methyl mercaptan, which is a typical odorous compound, under visible light. Modification of carbon nitride with silver nanoparticles significantly enhanced the adsorption capacity for CH3SH using interaction between Ag and sulfur atoms. Additionally, deposited Ag nanoparticles as co-catalyst increased the photoconversion efficiency and production of reactive radical species. On the basis of the control test of oxygen and water in the carrier gas and EPR analysis, it was revealed that the responsible reactive species for CH3SH decomposition was O2- radical. Mass balance of removed sulfur atoms and FT-IR analysis showed that Ag/CN degraded methyl mercaptan to gaseous dimethyl disulfide (CH3SSCH3) and sulfate deposited on the surface of catalyst. Thus, Ag/CN is proposed as an effective and appropriate photocatalyst to remove CH3SH under visible light

    Correlations in Appearance, Job-seeking Stress and Job-seeking Anxiety in Undergraduates according to Gender Differences

    Get PDF
    Purpose: The purpose of this study was to evaluate the differences between the level of satisfaction and concern regarding appearance according to gender, the importance of appearance in job interviews, and the influence appearance has on job-seeking stress and anxiety under the ever-increasing pressure on students to secure employment so that appropriate psychological interventions can be provided to undergraduates. Methods: The survey was conducted on 170 third and fourth year undergraduates in Gyeonggi province from August 31st to September 6th, 2012 to figure out the correlations and differences in variables of appearance satisfaction and concern, and the importance of appearance in job interviews and job-seeking stress and anxiety according to the differences in gender. Data were analyzed by descriptive statistics, independent t-test, two-way ANOVA, and Pearsons correlation analysis. Results: 1. There was difference between the genders for appearance satisfaction and concern. The level of satisfaction was higher in male students while concerns regarding appearance were higher in female students. There was no gender difference regarding the importance of appearance in job interviews, job-seeking stress, and job-seeking anxiety. 2. For the concerns in appearance, there was a significant difference between the genders in appearance management, and gender and the importance of appearance in job interviews showed significant interactive effects. Stress and anxiety from job-seeking did not show significant differences between the genders, but there were common significant interactive effects between gender and grades, gender and employment, and gender and the importance of appearance in job interviews. 3. Both male and female students showed higher job-seeking stress as their job-seeking anxiety was higher. Job-seeking anxiety was higher in male students who had higher concern in appearance, and in female students who placed more emphasis on the importance of appearance in job interviews. Conclusion: As female students perceived appearance in job interviews as important more than male students, their job-seeking anxiety was higher, while male students who showed higher concern in appearance also showed higher level of anxiety in job-seeking. As job-seeking anxiety was higher, job-seeking stress was also higher according to the entire participants, based on this result, methods to decrease job-seeking anxiety should be suggested
    corecore