159 research outputs found
Effect of archwire stiffness and friction on maxillary posterior segment displacement during anterior segment retraction: A three-dimensional finite element analysis
Objective:
Sliding mechanics using orthodontic miniscrews is widely used to stabilize the anchorage during extraction space closure. However, previous studies have reported that both posterior segment displacement and anterior segment displacement are possible, depending on the mechanical properties of the archwire. The present study aimed to investigate the effect of archwire stiffness and friction change on the displacement pattern of the maxillary posterior segment during anterior segment retraction with orthodontic miniscrews in sliding mechanics.
Methods:
A three-dimensional finite element model was constructed. The retraction point was set at the archwire level between the lateral incisor and canine, and the orthodontic miniscrew was located at a height of 8 mm from the archwire between the second premolar and first molar. Archwire stiffness was simulated with rectangular stainless steel wires and a rigid body was used as a control. Various friction levels were set for the surface contact model. Displacement patterns for the posterior and anterior segments were compared between the conditions.
Results:
Both the anterior and posterior segments exhibited backward rotation, regardless of archwire stiffness or friction. Among the conditions tested in this study, the least undesirable rotation was found with low archwire stiffness and low friction.
Conclusions:
Posterior segment displacement may be unavoidable but reducing the stiffness and friction of the main archwire may minimize unwanted rotations during extraction space closure.ope
Three-dimensional comparison of 2 digital models obtained from cone-beam computed tomographic scans of polyvinyl siloxane impressions and plaster models
Purpose:
This study was performed to evaluate the dimensional accuracy of digital dental models constructed from cone-beam computed tomographic (CBCT) scans of polyvinyl siloxane (PVS) impressions and cast scan models.
Materials and Methods:
A pair of PVS impressions was obtained from 20 subjects and scanned using CBCT (resolution, 0.1 mm). A cast scan model was constructed by scanning the gypsum model using a model scanner. After reconstruction of the digital models, the mesio-distal width of each tooth, inter-canine width, and inter-molar width were measured, and the Bolton ratios were calculated and compared. The 2 models were superimposed and the difference between the models was measured using 3-dimensional analysis.
Results:
The range of mean error between the cast scan model and the CBCT scan model was -0.15 mm to 0.13 mm in the mesio-distal width of the teeth and 0.03 mm to 0.42 mm in the width analysis. The differences in the Bolton ratios between the cast scan models and CBCT scan models were 0.87 (anterior ratio) and 0.72 (overall ratio), with no significant difference (P>0.05). The mean maxillary and mandibular difference when the cast scan model and the CBCT scan model were superimposed was 53 µm.
Conclusion:
There was no statistically significant difference in most of the measurements. The maximum tooth size difference was 0.15 mm, and the average difference in model overlap was 53 µm. Digital models produced by scanning impressions at a high resolution using CBCT can be used in clinical practice.ope
Resin-Based Sealant with Bioactive Glass and Zwitterionic Material for Remineralisation and Multi-Species Biofilm Inhibition
Since pits and fissures are the areas most commonly affected by caries due to their structural irregularity, bioactive resin-based sealant (RBS) may contribute to the prevention of secondary caries. This study aims to investigate the mechanical, physical, ion-release, enamel remineralisation, and antibacterial capabilities of the novel RBS with bioactive glass (BAG) and 2-methacryloyloxyethyl phosphorylcholine (MPC). For the synthesis, 12.5 wt% BAG and 3 wt% MPC were incorporated into RBS. The contact angle, flexural strength, water sorption, solubility, and viscosity were investigated. The release of multiple ions relating to enamel remineralisation was investigated. Further, the attachments of bovine serum albumin, brain heart infusion broth, and Streptococcus mutans on RBS were studied. Finally, the thickness and biomass of a human saliva-derived microsm biofilm model were analysed before aging, with static immersion aging and with thermocycling aging. In comparison to commercial RBS, BAG+MPC increased the wettability, water sorption, solubility, viscosity, and release of multiple ions, while the flexural strength did not significantly differ. Furthermore, RBS with MPC and BAG+MPC significantly reduced protein and bacteria adhesion and suppressed multi-species biofilm attachment regardless of the existence of aging and its type. The novel RBS has great potential to facilitate enamel remineralisation and suppress biofilm adhesion, which could prevent secondary dental caries.ope
Transcriptional Expression in Human Periodontal Ligament Cells Subjected to Orthodontic Force: An RNA-Sequencing Study
This study was performed to investigate the changes in gene expression in periodontal ligament (PDL) cells following mechanical stimulus through RNA sequencing. In this study, premolars extracted for orthodontic treatment were used. To stimulate the PDL cells, an orthodontic force of 100× g was applied to the premolar (experimental group; n = 11), whereas the tooth on the other side was left untreated (control group; n = 11). After the PDL cells were isolated from the extracted teeth, gene set enrichment analysis (GSEA), differentially expressed gene (DEG) analysis, and real-time PCR were performed to compare the two groups. GSEA demonstrated that gene sets related to the cell cycle pathway were upregulated in PDL. Thirteen upregulated and twenty downregulated genes were found through DEG analysis. Real-time PCR results confirmed that five upregulated genes (CC2D1B, CPNE3, OPHN1, TANGO2, and UAP-1) and six downregulated genes (MYOM2, PPM1F, PCDP1, ATP2A1, GPR171, and RP1-34H18.1-1) were consistent with RNA sequencing results. We suggest that, from among these eleven genes, two upregulated genes, CPNE3 and OPHN1, and one downregulated gene, PPM1F, play an important role in PDL regeneration in humans when orthodontic force is applied.ope
Wnt Pathway in Bone Repair and Regeneration - What Do We Know So Far
Wnt signaling plays a central regulatory role across a remarkably diverse range of functions during embryonic development, including those involved in the formation of bone and cartilage. Wnt signaling continues to play a critical role in adult osteogenic differentiation of mesenchymal stem cells. Disruptions in this highly-conserved and complex system leads to various pathological conditions, including impaired bone healing, autoimmune diseases and malignant degeneration. For reconstructive surgeons, critically sized skeletal defects represent a major challenge. These are frequently associated with significant morbidity in both the recipient and donor sites. The Wnt pathway is an attractive therapeutic target with the potential to directly modulate stem cells responsible for skeletal tissue regeneration and promote bone growth, suggesting that Wnt factors could be used to promote bone healing after trauma. This review summarizes our current understanding of the essential role of the Wnt pathway in bone regeneration and repair.ope
A three-dimensional finite element analysis of the relationship between masticatory performance and skeletal malocclusion
PURPOSE: The aim of this study was to evaluate the transfer of different occlusal forces in various skeletal malocclusions using finite element analysis (FEA).
METHODS: Three representative human cone-beam computed tomography (CBCT) images of three skeletal malocclusions were obtained from the Department of Orthodontics, Yonsei University Dental Hospital, Seoul, South Korea. The CBCT scans were read into the visualization software after separating bones and muscles by uploading the CBCT images into Mimics (Materialise). Two separate three-dimensional (3D) files were exported to visualize the solid morphology of skeletal outlines without considering the inner structures. Individual dental impressions were taken and stone models were scanned with a 3D scanner. These images were integrated and occlusal motions were simulated. Displacement and Von Mises stress were measured at the nodes of the FEA models. The displacement and stress distribution were analyzed. FEA was performed to obtain the 3D deformation of the mandibles under loads of 100, 150, 200, and 225 kg.
RESULTS: The distortion in all three skeletal malocclusions was comparable. Greater forces resulted in observing more distortion in FEA.
CONCLUSIONS: Further studies are warranted to fully evaluate the impact of skeletal malocclusion on masticatory performance using information on muscle attachment and 3D temporomandibular joint movements.ope
Physical properties of thermoplastic material for clear aligners
Recent technological advance have greatly expanded the application of invisible orthodontic treatment using clear thermoplastic materials. However, the final outcomes using clear aligner system do not achieve the level of final goal frequently, which results in case refinement, midcourse correction, or fixed orthodontic treatment. Therefore, mechanical properties of thermoplastic materials should be considered to improve the quality of outcomes. The purposes of this special article were to evaluate the force and stress depending on the materials, deflection and thickness of thermoplastic materials and to evaluate the mechanical properties of thermoplastic materials after repeated loading. Thickness and amount of deflection rather than products and materials showed the largest effect on force and stress. In all products, at least 159 gf of force was required for more than 1.0 mm deflection or when materials with 1.0 mm thickness were deflected. Orthodontic forces delivered by thermoplastic materials depend on the materials, thickness, amount of activation, and intra-oral condition. Proper thickness of thermoplastic materials and deflection level of tooth movement should be decided for the efficient and physiologic tooth movement.ope
Three-dimensional finite element analysis of unilateral mastication in malocclusion cases using cone-beam computed tomography and a motion capture system.
PURPOSE: Stress distribution and mandible distortion during lateral movements are known to be closely linked to bruxism, dental implant placement, and temporomandibular joint disorder. The present study was performed to determine stress distribution and distortion patterns of the mandible during lateral movements in Class I, II, and III relationships.
METHODS: Five Korean volunteers (one normal, two Class II, and two Class III occlusion cases) were selected. Finite element (FE) modeling was performed using information from cone-beam computed tomographic (CBCT) scans of the subjects' skulls, scanned images of dental casts, and incisor movement captured by an optical motion-capture system.
RESULTS: In the Class I and II cases, maximum stress load occurred at the condyle of the balancing side, but, in the Class III cases, the maximum stress was loaded on the condyle of the working side. Maximum distortion was observed on the menton at the midline in every case, regardless of loading force. The distortion was greatest in Class III cases and smallest in Class II cases.
CONCLUSIONS: The stress distribution along and accompanying distortion of a mandible seems to be affected by the anteroposterior position of the mandible. Additionally, 3-D modeling of the craniofacial skeleton using CBCT and an optical laser scanner and reproduction of mandibular movement by way of the optical motion-capture technique used in this study are reliable techniques for investigating the masticatory system.ope
Orthodontic Treatment with Bone Graft and the Traction of Impacted Tooth in an Unilateral Complete Cleft Lip and Palate Patient with Constricted Maxilla and Alveolar Cleft between Central and Lateral Incisors: Case Report
Purpose: We report the case of a skeletal Class III with unilateral complete cleft lip and palate patient who was performed orthodontic treatment with maxillary expansion, protraction, bone graft and impacted tooth traction. Case Report: A 8-year-old boy with cleft lip and palate showed narrow maxilla and anterior crossbite. To solve transverse deficiency of maxilla, median screw, rapid palatal expander, qaudhelix were operated. In addition to solving anteroposterior deficiency of maxilla, facemask was applied. In a period of root development of canine exceed 1/2-2/3, secondary alveolar bone graft with autogenous bone (illiac bone) was performed. After bone graft, the patient strategically took upper orthodontic treatment for sufficient eruption space and traction impacted tooth. As a result, it guided successful eruption of impacted tooth. Comprehensive orthodontic treatment was planned to take after completion of mandibular growth. Conclusions: Depending on the timing of orthodontic treatment and surgical intervention, cleft lip and palate can be managed by various treatment methods. In general, the most appropriate time for secondary bone graft is proposed as a mixed teeth, however depending on the location of alveolar cleft, the times will need to be applied differently to improve the prognosis for the traction of impacted teeth.ope
Three-dimensional finite element analysis of the deformation of the human mandible: a preliminary study from the perspective of orthodontic mini-implant stability
Objective: The aims of this study were to investigate mandibular deformation under clenching and to estimate its effect on the stability of orthodontic mini-implants (OMI).
Methods: Three finite element models were constructed using computed tomography (CT) images of 3 adults with different mandibular plane angles (A, low; B, average; and C, high). An OMI was placed between #45 and #46 in each model. Mandibular deformation under premolar and molar clenching was simulated. Comparisons were made between peri-orthodontic mini-implant compressive strain (POMI-CSTN) under clenching and orthodontic traction forces (150 g and 200 g).
Results: Three models with different mandibular plane angles demonstrated different functional deformation characteristics. The compressive strains around the OMI were distributed mesiodistally rather than occlusogingivally. In model A, the maximum POMI-CSTN under clenching was observed at the mesial aspect of #46 (1,401.75 microstrain [µE]), and similar maximum POMI-CSTN was observed under a traction force of 150 g (1,415 µE).
Conclusions: The maximum POMI-CSTN developed by clenching failed to exceed the normally allowed compressive cortical bone strains; however, additional orthodontic traction force to the OMI may increase POMI-CSTN to compromise OMI stability.ope
- …
