10 research outputs found

    ๋„์š”ํƒ€, ๋‹›์‚ฐ, ๋งˆ์“ฐ๋‹ค์˜ ์ผ€์ด์Šค๋ฅผ ํ†ตํ•ด์„œ ๋ณธ ์ผ๋ณธ ์ž๋™์ฐจ ์‚ฐ์—…์˜ ์ˆ˜์ง ๊ฒŒ์ด๋ ˆ์ธ  ๋น„๊ต๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ตญ์ œ๋Œ€ํ•™์› ๊ตญ์ œํ•™๊ณผ(๊ตญ์ œํ˜‘๋ ฅ์ „๊ณต),2019. 8. ๊น€ํ˜„์ฒ .The purpose of this paper is to discuss the transformation of a unique governance structure known as vertical keiretsu system in Japanese automobile industry since the 1990s. Through employing the concepts of institutionalization and deinstitutionalization in institutional theory, the paper attempts to describe the divergence of three Japanese automobile firms in their reactions to the pressures of breaking off the traditional vertical keiretsu and further to investigate the reasons behind the difference. The case analysis of Toyota, Nissan, and Mazda based on the empirical data on each of the suppliers associations and automakers procurement transactions with keiretsu suppliers suggests that the vertical keiretsu was fairly preserved and even strengthened in Toyota while undergoing the gradual dismantlement in Mazda and the radical breakdown in Nissan. The disparity among the three is due to the fact that firms affected by different degrees (strong or weak) of three types of deinstitutionalizing pressures โ€“ political, functional, and social โ€“ respond accordingly to either the continuance or the discontinuance of vertical keiretsu network. After the economic recession of Japanese economy in the 1990s, many Japanese firms including Nissan and Mazda experienced an overwhelming financial turmoil which suddenly exacerbated their corporate performance (functional pressure) and eventually necessitated the acquisition by their respective foreign firms (political pressure). In contrast, Toyota who quickly recovered from the recession and attained a high level of financial performance was free from the external political pressure of foreign influence in the management of its keiretsu system. Therefore, the overall picture of Japanese vertical keiretsu emphasizes the role of functional pressure which stands at the core of the keiretsu transformation.๋ณธ ๋…ผ๋ฌธ์˜ ๋ชฉ์ ์€ 1990๋…„๋Œ€ ์ดํ›„ ์ผ๋ณธ์˜ ๋…ํŠนํ•œ ๊ฑฐ๋ฒ„๋„Œ์Šค ๊ตฌ์กฐ์ธ ์ˆ˜์ง ๊ฒŒ์ด ๋ ˆ์ธ ๊ฐ€ ์ผ๋ณธ ์ž๋™์ฐจ ์‚ฐ์—…์—์„œ ์–ด๋–ป๊ฒŒ ๋ณ€ํ™”ํ•˜์˜€๋Š”์ง€์— ๋Œ€ํ•ด ๋…ผ์˜ํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋ณธ๊ณ ๋Š” ์ œ๋„ํ™” ์ด๋ก ์˜ ์ œ๋„ํ™”์™€ ํƒˆ์ œ๋„ํ™”๋ผ๋Š” ๊ฐœ๋…์„ ํ† ๋Œ€๋กœ ์ผ๋ณธ ์ž๋™์ฐจ ๊ธฐ์—… ๋“ค์ด ์ „ํ†ต์ ์ธ ์ˆ˜์ง ๊ฒŒ์ด๋ ˆ์ธ ๋ฅผ ์ค‘๋‹จ ์‹œํ‚ค๋ ค๋Š” ํƒˆ์ œ๋„ํ™”๋ผ๋Š” ์••๋ ฅ์— ๋Œ€ํ•ด ๋ณด์ธ ์ƒ์ดํ•œ ๋ฐ˜์‘์— ๋Œ€ํ•ด ์„œ์ˆ ํ•˜๋ฉฐ ๋‚˜์•„๊ฐ€ ์™œ ๊ทธ ์ฐจ์ด๊ฐ€ ์žˆ์—ˆ๋Š”์ง€์— ๋Œ€ํ•ด ์‚ดํŽด๋ณธ๋‹ค. ๋„์š”ํƒ€, ๋‹›์‚ฐ, ๋งˆ์“ฐ๋‹ค์˜ ์„œํ”Œ๋ผ์ด์–ด ํ˜‘ํšŒ์˜ ๋ฐ์ดํ„ฐ์™€ ๊ฐ ๊ธฐ์—…์˜ ๊ณ„์—ด(๊ฒŒ์ด๋ ˆ์ธ ) ์„œํ”Œ๋ผ์ด์–ด์™€์˜ ๋ถ€ํ’ˆ์กฐ๋‹ฌ ๊ฑฐ๋ž˜์˜ ์ž๋ฃŒ๊ฐ€ ์‹œ์‚ฌํ•˜๋Š” ๋ฐ”๋Š” ์ˆ˜์ง ๊ฒŒ์ด๋ ˆ์ธ  ์‹œ์Šคํ…œ์ด ๋„์š”ํƒ€์—์„œ๋Š” ์œ ์ง€๋  ๋ฟ ์•„๋‹ˆ๋ผ ๊ฐ•ํ™”๋˜๋Š” ์–‘์ƒ (์ œ๋„ํ™”)์„ ๋ณด์ธ ๋ฐ˜๋ฉด ๋งˆ์“ฐ๋‹ค์˜ ์ˆ˜์ง ๊ฒŒ์ด๋ ˆ์ธ ๋Š” ์ ์ฐจ ํ•ด์ฒด๋˜๊ณ  ๋‹›์‚ฐ์€ ๊ธ‰๊ฒฉํ•˜๊ฒŒ ๊ฒŒ์ด๋ ˆ์ธ ๊ฐ€ ๋ถ•๊ดดํ•˜๋Š” ๋ชจ์Šต (ํƒˆ์ œ๋„ํ™”)์„ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์ฐจ์ด(๋‹ค์ด๋ฒ„์ ผ์Šค)๋Š” ๊ฐ ๊ธฐ์—…์ด ์ˆ˜์ง ๊ฒŒ์ด๋ ˆ์ธ  ์‹œ์Šคํ…œ์„ ์œ ์ง€ ๋˜๋Š” ํ•ด์ฒด์‹œํ‚ค๋ ค๋Š” ์„ ํƒ์— ์žˆ์–ด์„œ ์ •์น˜์ , ๊ธฐ๋Šฅ์ , ๊ทธ๋ฆฌ๊ณ  ์‚ฌํšŒ์  ์••๋ ฅ์œผ๋กœ ๋ถ„๋ฅ˜๋˜๋Š” ์„ธ๊ฐ€์ง€ ํƒˆ์ œ๋„ํ™” ์••๋ ฅ์— ์˜ํ–ฅ์„ ๋ฐ›๋Š” ์ •๋„(๊ฐ•ํ•œ ์˜ํ–ฅ ๋˜๋Š” ์•ฝํ•œ ์˜ํ–ฅ)์— ์ฐจ์ด๊ฐ€ ์กด์žฌํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. 1990๋…„๋Œ€์— ์ผ๋ณธ ๊ฒฝ์ œ๊ฐ€ ๊ฒฝํ—˜ํ•œ ๊ฒฝ๊ธฐ์นจ์ฒด ์ดํ›„ ๋‹›์‚ฐ๊ณผ ๋งˆ์“ฐ๋‹ค์™€ ๊ฐ™์€ ๊ธฐ์—…๋“ค์€ ๊ทน์‹ฌํ•œ ์žฌ๋ฌด์  ์ƒํ™ฉ์œผ๋กœ ์ธํ•ด ๊ธ‰๊ฒฉํ•˜๊ฒŒ ๊ธฐ์—…์‹ค์ ์ด ์•…ํ™”(๊ธฐ๋Šฅ์  ์••๋ ฅ)๋˜์—ˆ๊ณ  ๊ฒฐ๊ตญ ์™ธ๊ตญ ๊ธฐ์—…๋“ค์— ์˜ํ•œ ์ธ์ˆ˜ ๋˜๋Š” ๊ธฐ์—…๋“ค๊ณผ์˜ ์ „๋žต์  ์ œํœด (์ •์น˜์  ์••๋ ฅ)๋กœ ์ด์–ด์กŒ๋‹ค. ๋ฐ˜๋ฉด, ๊ฒฝ๊ธฐ์นจ์ฒด์—์„œ ์žฌ๋นจ๋ฆฌ ํšŒ๋ณตํ•˜๋ฉฐ ๋†’์€ ์ˆ˜์ค€์˜ ์žฌ๋ฌด์  ์„ฑ๊ณผ๋ฅผ ๋‹ฌ์„ฑํ•œ ๋„์š”ํƒ€๋Š” ๊ฒŒ์ด๋ ˆ์ธ  ์‹œ์Šคํ…œ์„ ์šด์˜ํ•˜๋Š”๋ฐ ์žˆ์–ด์„œ ์™ธ๋ถ€์—์„œ ์˜ค๋Š” ์™ธ๊ตญ๊ธฐ์—…์˜ ์ •์น˜์ ์ธ ์••๋ ฅ ๋˜๋Š” ์˜ํ–ฅ์—์„œ ์ž์œ ๋กœ์› ๋‹ค. ๋”ฐ๋ผ์„œ ์ผ๋ณธ ์ž๋™์ฐจ ์‚ฐ์—…์˜ ์ˆ˜์ง ๊ฒŒ์ด๋ ˆ์ธ ๋ฅผ ์ข…ํ•ฉ์ ์œผ๋กœ ํŒ๋‹จํ•  ๋•Œ ๊ฒŒ์ด๋ ˆ์ธ  ๋ณ€ํ™”์— ์žˆ์–ด์„œ ๊ธฐ๋Šฅ์  ์••๋ ฅ์ด ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ–ˆ๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋‹ค.I. Introduction 1 1. Brief 1 2. Literature 3 II. Research 7 1. Theoretical 7 2. Research 10 3. Methodology 12 4. Hypothesis 14 III. Analysis 17 1. Transformation 17 1-1. Historical 18 1-2. General Financial Background of Japanese Automobile Industry 23 1-3. Change 25 2. Case 27 2-1. Toyotas 27 2-2. Toyotas 31 3. Case 35 3-1. Nissans 35 3-2. Nissans 38 4. Case 42 4-1. Mazdas 42 4-2. Mazdas 44 IV. Discussion 47 V. Conclusion 52 1. Concluding 52 2. Limitations 55 Bibliography 57 Abstract 68Maste

    ํŒŒ์žฅ๋ณ€์ด์„ฌ์œ ๋ฅผ ์ด์šฉํ•œ ๋ฎค์˜จ ํ† ๋ชจ๊ทธ๋ž˜ํ”ผ ์‹œ์Šคํ…œ์˜ ์„ค๊ณ„ ๋ฐ ํŠน์„ฑ ์—ฐ๊ตฌ

    No full text
    Dept. of Radiological Science/์„์‚ฌMuon tomography is a useful method for monitoring special nuclear materials (SNMs) using multiple Coulomb scattering of muons. Tracking the incoming and outgoing trajectories of muons enables the detection of SNMs and shielding materials. We designed a muon tomography system consisting of four detector modules. The incident and scattered muon tracks were calculated by two top and two bottom detectors, respectively. The degree of the scattering angle represented the atomic number of the material. The proposed detector module for the muon tomography system was composed of a plastic scintillator, wavelength-shifting (WLS) fiber arrays placed on the top and bottom of the scintillator orthogonally, and a position-sensitive Photomultiplier (PSPMT). Light photons in the scintillator were absorbed by the WLS fibers, and the re-emitted green lights were guided to the PSPMT. The light distribution among WLS fibers determined the position of the muon interaction. 3-D tomographic images were obtained by extracting the crossing points of each muon track with a point-of-closest-approach algorithm. The aim of this study was to optimize the design parameters of a muon tomography system using DETECT2000 and GEANT4 and to experimentally evaluate the performance of the proposed detector. The detector module consisted of a 10 x 10 cm2 plastic scintillator (BC-408 equivalent, Epic-crystal), 0.2 x 0.2 x 50 cm3 WLS fibers (BCF-91A, Saint-Gobain), and a PSPMT (H7546A-300 MOD, Hamamatsu). The images were obtained using a 420 nm laser light source. The experimental results agreed well with simulation. These results indicate that the detector module is feasible for a muon tomography system, and they verify the Z-discrimination capability of the muon tomography system.ope

    Development of Green Technology Education Program Using Appropriate Technology

    No full text
    corecore