6 research outputs found

    ์œ„ํ—˜๋„ ๋ฐ ์„ฑ๋Šฅ ๊ธฐ์ค€์— ๊ทผ๊ฑฐํ•œ ์„ ์ง„ ์ˆœํ™˜ํ•ต์—ฐ๋ฃŒ์ฃผ๊ธฐ ๋ฐฉ์‚ฌ์„ฑํ๊ธฐ๋ฌผ ์ฒ˜๋ถ„์žฅ์— ๋Œ€ํ•œ ํ™˜๊ฒฝ์˜ํ–ฅํ‰๊ฐ€

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์—๋„ˆ์ง€์‹œ์Šคํ…œ๊ณตํ•™๋ถ€, 2012. 2. ํ™ฉ์ผ์ˆœ.Spent nuclear fuel (SNF) management has become one of the major challenges of nuclear power plant operation. Both direct disposal and closed fuel cycle have been criticized by the general public due to uncertainties with the long-term safety of SNF and high level waste (HLW) repositories. To meet the goal of sustainable nuclear energy systems, an advanced closed fuel cycle using pyrochemical partitioning and transmutation has been explored, in this thesis, in order to eliminate the need for HLW repositories. From earlier experimental results on pyroprocessing, an advanced pyrochemical partitioning flowsheet has been developed and designated as PyroGreen that uses a combination of hull electrorefining, reductive extraction, and selective oxidation to further decontaminate final wastes into the class of low- and intermediate-level waste (LILW). The long-term environmental impact of a geological repository of the final PyroGreen-produced wastes is evaluated in this thesis in order to examine the feasibility of eliminating the need for HLW repository. The final repository performance has been evaluated based on the criteria of risk-informed performance-based waste classification: alpha emitter activity concentration, heat generation, and exposure dose in the surrounding biosphere. Intermediate level wastes (ILWs) arising from PyroGreen are assumed to be disposed of in a geological repository at an intermediate depth, in accordance with the latest International Atomic Energy Agency General Safety Guide for nuclear waste classification. The environmental impact of a geological repository in a saturated zone was evaluated by SAFE-ROCKยฎ code for the final wastes of entire 26,000 MTU of SNF produced from 24 light water reactors with 1,000 MWe with a design life of 40 years. SAFE-ROCKยฎ code was benchmarked against an independent computational model, TTB, to confirm the validity. Leaching and migration assessment on directly disposed SNF and recycling nuclear wastes showed that long-lived fission products including C-14, Cl-36, Se-79, Sn-126, I-129, and Cs-135 will dominate the long-term radiation dose in biosphere, whereas transuranic elements (TRU), with low solubility and migration capability, will remain to present the primary risk under inadvertent human intrusion scenarios. It is shown that the predicted migration dose of the final wastes meets the dose rate limit on long-lived nuclear waste disposal. From the risk-informed performance-based criteria and environmental impact assessments, this thesis determined required decontamination factors of key radionuclides for intermediate-depth and near-surface disposal and compared it with achievable decontamination factors of PyroGreen process. The required decontamination factors for intermediate-depth disposal are finally determined as 20,000 for both uranium and TRU, 100 for Sr, Y, Ba, and Cs, and 50 for Tc and I respectively. Alpha emitter activity concentration of the PyroGreen wastes is designed to be the same as those of wastes in the U S Waste Isolation Pilot Plant (WIPP) site that is considered to be equivalent to an ILW repository with low heat generation and low activity concentration of long-lived TRU wastes. The TRU concentration at the WIPP has been low enough to yield an acceptable risk under inadvertent intrusion scenario. PyroGreen for eliminating the need for a HLW repository is shown to be feasible because the experimentally achieved decontamination factors on key isotopes are higher than the required values for satisfying both migration dose limit and intrusion risk. Therefore, PyroGreen has been proposed as advanced closed fuel cycle option that meets the goal of sustainable nuclear power systems.์‚ฌ์šฉํ›„ํ•ต์—ฐ๋ฃŒ ์ฒ˜๋ฆฌ๋Š” ์›์ž๋ ฅ๋ฐœ์ „์˜ ์ด์šฉ์„ ์œ„ํ•ด ๋ฐ˜๋“œ์‹œ ํ•ด๊ฒฐ๋˜์–ด์•ผ ํ•˜๋Š” ์ฃผ์š” ํ˜„์•ˆ์ด๋‹ค. ์‚ฌ์šฉํ›„ํ•ต์—ฐ๋ฃŒ ์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ•์œผ๋กœ ์ง์ ‘์ฒ˜๋ถ„๊ณผ ์žฌํ™œ์šฉ ํ›„ ์ฒ˜๋ถ„์ด ์ œ์•ˆ๋˜์—ˆ์œผ๋‚˜ ํ˜„ ๊ธฐ์ˆ ๋กœ๋Š” ์—ฌ์ „ํžˆ ๊ณ ์ค€์œ„ํ๊ธฐ๋ฌผ์„ ๋ฐœ์ƒ์‹œํ‚ค๊ธฐ ๋•Œ๋ฌธ์— ์žฅ๊ธฐ๊ฐ„ ์•ˆ์ „์„ฑ ์ธก๋ฉด์—์„œ ๋Œ€์ค‘ ์ˆ˜์šฉ์„ฑ์ด ๋‚ฎ๊ณ  ๋ถˆํ™•์‹ค์„ฑ์ด ํฌ๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด, ๋ณธ ๋…ผ๋ฌธ์€ ํŒŒ์ด๋กœํ”„๋กœ์„ธ์‹ฑ๊ณผ ๊ณ ์†๋กœ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ณ ์ค€์œ„ํ๊ธฐ๋ฌผ์„ ์ œ๊ฑฐํ•˜๋Š” ์„ ์ง„ ์ˆœํ™˜ํ•ต์—ฐ๋ฃŒ์ฃผ๊ธฐ์˜ ํƒ€๋‹น์„ฑ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ํŒŒ์ด๋กœํ”„๋กœ์„ธ์‹ฑ์— ๋Œ€ํ•œ ๊ธฐ์กด ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, ํŒŒ์ด๋กœ๊ทธ๋ฆฐ์ด๋ผ ๋ช…๋ช…๋œ ์„ ์ง„ ํŒŒ์ด๋กœํ”„๋กœ์„ธ์‹ฑ ๊ณต์ •ํ๋ฆ„๋„๊ฐ€ ์ œ์ž‘๋˜์—ˆ๊ณ , ์ด๋Š” ์‚ฌ์šฉํ›„ํ•ต์—ฐ๋ฃŒ๋ฅผ ์ค‘์ €์ค€์œ„ํ™”ํ•˜๋Š” ํ”ผ๋ณต๊ด€ ์ „ํ•ด์ •๋ จ๊ณผ ์šฉ์œต์—ผ ์žฌ์ƒ ๊ณต์ •์„ ํฌํ•จํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์ตœ์ข… ํ๊ธฐ๋ฌผ์˜ ์ค‘์ €์ค€์œ„ํ™” ํƒ€๋‹น์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ์œ„ํ•ด, ํŒŒ์ด๋กœ๊ทธ๋ฆฐ ๊ฑด์‹๊ณต์ •์˜ ์ตœ์ข… ๋ฐฉ์‚ฌ์„ฑํ๊ธฐ๋ฌผ ์ฒ˜๋ถ„์žฅ์—์„œ ์žฅ๊ธฐ ํ™˜๊ฒฝ์˜ํ–ฅ๊ณผ ์œ„ํ—˜๋„๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ตœ์ข… ํ๊ธฐ๋ฌผ์„ ์ค‘์ €์ค€์œ„ํ๊ธฐ๋ฌผ๋กœ ๋ถ„๋ฅ˜ํ•˜๊ธฐ ์œ„ํ•œ ์ œ์—ผ๊ณ„์ˆ˜๋ฅผ ๋„์ถœํ•˜๊ธฐ ์œ„ํ•ด, ์œ„ํ—˜๋„ ๋ฐ ์„ฑ๋Šฅ ๊ธฐ์ค€์—์„œ ์ตœ์ข… ํ๊ธฐ๋ฌผ์˜ ์•ŒํŒŒ์„  ๋ฐฉ์ถœ ํ•ต์ข… ๋ฐฉ์‚ฌ๋Šฅ ๋†๋„, ์—ด ๋ฐœ์ƒ, ์ƒํƒœ๊ณ„ ํ”ผํญ์„ ๋Ÿ‰์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ํŒŒ์ด๋กœ๊ทธ๋ฆฐ์˜ ์ตœ์ข… ํ๊ธฐ๋ฌผ์€ ์ง€ํ•˜ ์ˆ˜์‹ญ์—์„œ ์ˆ˜๋ฐฑ ๋ฏธํ„ฐ ๊นŠ์ด์— ์œ„์น˜ํ•œ ํ•˜๋‚˜์˜ ์ค‘์ธต ์ฒ˜๋ถ„์žฅ์—์„œ ์ฒ˜๋ถ„๋œ๋‹ค๊ณ  ๊ฐ€์ •๋˜๋ฉฐ, ์ด ์ค‘์ธต ์ฒ˜๋ถ„์˜ ๊ฐœ๋…์€ ๊ตญ์ œ์›์ž๋ ฅ๊ธฐ๊ตฌ๊ฐ€ 2009๋…„์— ์ œ์•ˆํ•œ ์œ„ํ—˜๋„์— ๊ทผ๊ฑฐํ•œ ๋ฐฉ์‚ฌ์„ฑํ๊ธฐ๋ฌผ ๋ถ„๋ฅ˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ํฌํ™”๋Œ€์— ์œ„์น˜ํ•œ ์ตœ์ข… ์ค‘์ธต ์ฒ˜๋ถ„์žฅ์˜ ํ™˜๊ฒฝ์˜ํ–ฅ์€ SAFE-ROCK ์•ˆ์ „์„ฑํ‰๊ฐ€ ์ฝ”๋“œ๋ฅผ ํ†ตํ•ด ํ‰๊ฐ€๋˜์—ˆ๊ณ , 40๋…„ ์„ค๊ณ„์ˆ˜๋ช…์„ ๊ฐ–๋Š” ๊ฒฝ์ˆ˜๋กœ 24๊ธฐ์—์„œ ๋ฐœ์ƒํ•œ 26,000 MTU์˜ ์‚ฌ์šฉํ›„ํ•ต์—ฐ๋ฃŒ๊ฐ€ ๋ถ„์„๋˜์—ˆ๋‹ค. ๋˜ํ•œ SAFE-ROCK ์ฝ”๋“œ๋Š” ๋ฏธ๊ตญ์—์„œ ๋…๋ฆฝ์ ์œผ๋กœ ๊ฐœ๋ฐœ๋œ TTB ์ฝ”๋“œ์™€ ๋ฒค์น˜ ๋งˆํฌ๋˜์—ˆ๋‹ค. ์ง์ ‘์ฒ˜๋ถ„๊ณผ ํŒŒ์ด๋กœ๊ทธ๋ฆฐ ์žฌํ™œ์šฉ ํ๊ธฐ๋ฌผ์— ๋Œ€ํ•œ ์ง€ํ•˜์ˆ˜์ด๋™์‹œ๋‚˜๋ฆฌ์˜ค ํ‰๊ฐ€๋Š” ํ™˜์› ํ™˜๊ฒฝ์—์„œ C-14, Cl-36, Se-79, Sn-126, I-129, Cs-135์™€ ๊ฐ™์€ ์ผ๋ถ€ ํ•ต๋ถ„์—ด์ƒ์„ฑ๋ฌผ๋“ค์ด ์—ฐ๊ฐ„ํ”ผํญ์„ ๋Ÿ‰์— ํฌ๊ฒŒ ๊ธฐ์—ฌํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋ฐ˜๋ฉด ๋‚ฎ์€ ์šฉํ•ด๋„์™€ ๋†’์€ ํก์ฐฉ๊ณ„์ˆ˜๋ฅผ ๊ฐ–๋Š” ์ดˆ์šฐ๋ผ๋Š„์›์†Œ๋Š” ์ง€ํ•˜์ˆ˜์ด๋™์ด ๋Š๋ ค ์ธ๊ฐ„์นจ์ž…์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ์œ„ํ—˜๋„๊ฐ€ ํด ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํŒŒ์ด๋กœ๊ทธ๋ฆฐ์˜ ์ตœ์ข… ์ฒ˜๋ถ„์žฅ์€ ์žฅ๋ฐ˜๊ฐ๊ธฐํ๊ธฐ๋ฌผ ์ฒ˜๋ถ„์— ๋Œ€ํ•œ ๊ทœ์ œ๊ธฐ์ค€ (0.1 mSv/year)๋ณด๋‹ค ๋‚ฎ์€ ์—ฐ๊ฐ„ ํ”ผํญ์„ ๋Ÿ‰์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ˆ˜ํ–‰๋œ ํ™˜๊ฒฝ์˜ํ–ฅํ‰๊ฐ€์™€ ์œ„ํ—˜๋„ ๋ฐ ์„ฑ๋Šฅ ๊ธฐ์ค€์„ ๋ฐ”ํƒ•์œผ๋กœ, ๋ณธ ๋…ผ๋ฌธ์€ ์ค‘์ธต์ฒ˜๋ถ„๊ณผ ์ฒœ์ธต์ฒ˜๋ถ„์„ ์œ„ํ•ด ์š”๊ตฌ๋˜๋Š” ์ฃผ์š” ํ•ต์ข…์˜ ์ œ์—ผ๊ณ„์ˆ˜๋ฅผ ๊ฒฐ์ •ํ•˜์˜€๊ณ , ์ด๋ฅผ ์„ ์ง„ ํŒŒ์ด๋กœํ”„๋กœ์„ธ์‹ฑ์—์„œ ๋„๋‹ฌ๊ฐ€๋Šฅํ•œ ์ œ์—ผ๊ณ„์ˆ˜์™€ ๋น„๊ตํ•˜์˜€๋‹ค. ์ค‘์ธต์ฒ˜๋ถ„์„ ์œ„ํ•ด ์š”๊ตฌ๋˜๋Š” ์ œ์—ผ๊ณ„์ˆ˜๋Š” ๊ณ ์†๋กœ ์—ฐ๋ฃŒ๋กœ ์‚ฌ์šฉ๋˜๋Š” ์šฐ๋ผ๋Š„๊ณผ ์ดˆ์šฐ๋ผ๋Š„์›์†Œ์— ๋Œ€ํ•ด 20,000, ๊ณ ์—ด์„ ๋ฐฉ์ถœํ•˜๋Š” Sr, Y, Ba, Cs์— ๋Œ€ํ•ด 100, ํ•ต๋ณ€ํ™˜ ๋Œ€์ƒ์ธ Tc, I์— ๋Œ€ํ•ด 50์œผ๋กœ ๊ฒฐ์ •๋˜์—ˆ๋‹ค. ์ด ์ œ์—ผ๊ณ„์ˆ˜๋Š” ํŒŒ์ด๋กœ๊ทธ๋ฆฐ ํ๊ธฐ๋ฌผ์˜ ์•ŒํŒŒ ํ•ต์ข… ๋†๋„๊ฐ€, ์ดˆ์šฐ๋ผ๋Š„์›์†Œ๋ฅผ ํฌํ•จํ•œ ์ค‘์ค€์œ„ํ๊ธฐ๋ฌผ์„ ์ฒ˜๋ถ„ํ•˜๋Š” ๋ฏธ๊ตญ WIPP ์ฒ˜๋ถ„์žฅ์˜ ์•ŒํŒŒ ํ•ต์ข… ๋†๋„์™€ ๋™์ผํ•˜๊ฒŒ ๋˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. WIPP ์ฒ˜๋ถ„์žฅ์€ ์ธ๊ฐ„์นจ์ž…์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ์•ˆ์ „์„ฑ์ด ์ž…์ฆ๋˜์—ˆ์œผ๋ฉฐ, ์•ŒํŒŒ์„  ๋ฐฉ์ถœ ํ•ต์ข… ๋†๋„๋ฅผ ์ œํ•œํ•˜์—ฌ ํŒŒ์ด๋กœ๊ทธ๋ฆฐ ์ฒ˜๋ถ„์žฅ์˜ ์ธ๊ฐ„์นจ์ž… ์œ„ํ—˜๋„๋ฅผ ๊ฐ์†Œ์‹œํ‚จ๋‹ค. ๋˜ํ•œ ์„ ์ง„ ํŒŒ์ด๋กœํ”„๋กœ์„ธ์‹ฑ์˜ ๋„๋‹ฌ๊ฐ€๋Šฅํ•œ ์ œ์—ผ๊ณ„์ˆ˜๋Š” ์ค‘์ธต์ฒ˜๋ถ„์„ ์œ„ํ•ด ์š”๊ตฌ๋˜๋Š” ์ œ์—ผ๊ณ„์ˆ˜๋ณด๋‹ค ๋†’์•„, ์‚ฌ์šฉํ›„ํ•ต์—ฐ๋ฃŒ์˜ ์ค‘์ €์ค€์œ„ํ™”๊ฐ€ ํƒ€๋‹น์„ฑ์ด ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ํŒŒ์ด๋กœ๊ทธ๋ฆฐ์€ ์ง€์†๊ฐ€๋Šฅํ•œ ์›์ž๋ ฅ ์‹œ์Šคํ…œ์„ ์ถฉ์กฑ์‹œํ‚ค๋Š” ์„ ์ง„ ์ˆœํ™˜ํ•ต์—ฐ๋ฃŒ์ฃผ๊ธฐ ์ •์ฑ…์œผ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.1.Introduction 1_x000D_ 1.1.Background 1_x000D_ 1.2.Objectives 3_x000D_ 2.Literature Review 4_x000D_ 2.1.Previous study 4_x000D_ 2.2.Spent fuel characteristics 5_x000D_ 2.2.1.Decay heat 5_x000D_ 2.2.2.Radiotoxicity 6_x000D_ 2.2.3.Groundwater migration behavior 7_x000D_ 2.3.Nuclear waste classification and disposal regulation 7_x000D_ 2.3.1.Heat generation and alpha emitter activity 7_x000D_ 2.3.2.Dose limit for long-term environmental impact 9_x000D_ 2.4.SAFE-ROCK code for environmental impact assessment 10_x000D_ 2.4.1.Near-field model 11_x000D_ 2.4.2.Far-field model 11_x000D_ 3.Rationale and Approach 21_x000D_ 3.1.Problem statement 21_x000D_ 3.2.Goals 22_x000D_ 3.3.Approach 24_x000D_ 4.Risk-Informed Performance-Based Waste Classification Criteria 26_x000D_ 5.Nuclear Waste Inventory for Environmental Impact Assessment 27_x000D_ 6.Benchmark of SAFE-ROCK Code and Environmental Impact Assessment on Groundwater Migration 30_x000D_ 6.1.SAFE-ROCK code benchmark 31_x000D_ 6.2.Repository environmental impact assessment 32_x000D_ 6.3.Nuclides migration characteristics 33_x000D_ 7.Determination of Required Decontamination Factors for Disposing Final Wastes as LILW 46_x000D_ 7.1.Decontamination factors with heat generation and alpha-emitter activity 46_x000D_ 7.2.Decontamination factors of environmental impact assessment 49_x000D_ 7.3.Comparison of required decontamination factors for near-surface and intermediate-depth disposal 49_x000D_ 8.Achievable Decontamination Factors of PyroGreen P&T Systems 54_x000D_ 8.1.Partitioning process 54_x000D_ 8.2.Transmutation feasibility 57_x000D_ 9.Summary and Conclusions 62_x000D_ Bibliography 64_x000D_ Appendix 71_x000D_ ๊ตญ๋ฌธ ์ดˆ๋ก 81_x000D_ ๊ฐ์‚ฌ์˜ ๊ธ€ 83Maste

    Characterization of a novel p21-activated protein kinase(PAK-Ac) in Acanthamoeba castellanii

    No full text
    Thesis(master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ƒ๋ช…๊ณผํ•™๋ถ€,2004.Maste
    corecore