9 research outputs found

    초고성능 콘크리트의 폐유리 골재 적용 효과 및 분석

    Get PDF
    학위논문(석사) -- 서울대학교대학원 : 공과대학 건축학과, 2021.8. 문건웅.Waste glass is representing as an environmental problem all over the world. Since a lot of waste glass is buried in the landfill, it causes environmental pollution, and the recycling rate of waste glass has not reached the standard of the mandatory recycling amount. Therefore, as interest in the recycling of waste glass is increasing, the studies on the architectural use of waste glass have been actively progressed in recent years. Typically, waste glass is crushed into powder size to replace cement in concrete or into aggregate size to replace aggregate in concrete. However, in literature studies, the performance change according to the replacement rate of waste glass was not consistent. In addition, the ASR, which is a negative effect due to the waste glass, was not consistent too. While studies on the replacing of waste glass into normal concrete are in progress, only few studies have been progressed on the replacing of waste glass into Ultra High-Performance Concrete. Therefore, this thesis focused on replacing fine aggregate of Ultra High-Performance Concrete with waste glass aggregate. The performance is evaluated by comparing the silica sand (fine aggregate of UHPC) with waste glass aggregate. Since the waste glass aggregate has a smoother surface than silica sand, slip phenomenon is expected to occur, and performance degradation is concerned. Therefore, the tests were conducted with the replacement rate of waste glass aggregate, which is expected to affect the performance, as a parameter. In addition, the tests were conducted by applying two developments of performance degradation. In conclusion, as the replacement rate of waste glass aggregate increased, the performance of UHPC decreased. However, when considering eco-friendliness and economic, the replacement rate was 10% as the optimal replacing rate (more than 95% of the performance of the UHPC). In addition, it was confirmed that the performance of UHPC, which applied two developments for alleviating performance degradation due to the replacement of waste glass (10%), was improved through mechanical and durability tests.전 세계적으로 폐유리는 환경적인 문제로 부상하고 있다. 많은 폐유리가 매립지에 그대로 묻히기 때문에 환경적인 오염을 유발 시키고 또한 폐유리의 재활용율도 재활용 의무량 기준에 도달하지 못하고 있다. 따라서 폐유리의 재활용에 관한 관심이 증가하는 가운데 최근 폐유리의 건축적 활용에 대한 연구들이 활발히 진행되고 있다. 대표적으로 폐유리를 파우더 크기로 분쇄하여 콘크리트의 시멘트와 대체하거나 골재 크기로 파쇄하여 콘크리트 속 골재를 대체하는 연구로 나뉜다. 하지만 기존 논문들에서는 폐유리의 대체율에 따른 성능 변화가 일정하지 않았다. 그리고 폐유리로 인한 부정적 영향인 ASR 반응도 일정하지 않았다. 일반 콘크리트에 폐유리 혼입에 관한 연구는 진행중인 반면, 초고성능 콘크리트에 폐유리 혼입에 관한 연구는 거의 이루어지지 않았다. 따라서 본 연구에서는 초고성능 콘크리트의 잔골재를 폐유리골재로 대체하는 것에 초점을 두었다. 초고성능 콘크리트의 잔골재인 실리카 퓸과 폐유리 골재를 비교하면서 성능 확인이 필요하다. 폐유리 골재가 실리카 퓸에 비해 표면이 매끄럽기 때문에 slip 현상이 발생할 것으로 예상, 성능적 저하가 우려된다. 따라서 성능에 영향을 미칠 것으로 예상되는 폐유리 골재 대체율을 변수로 두고 실험하였다. 또한 성능저하에 두 가지 방안을 적용하여 실험하였다. 결론적으로, 폐유리 골재 대체율이 증가함에 따라 초고성능 콘크리트의 성능이 저하되었다. 하지만 친환경성, 경제성을 고려할 경우 대체율이 10%가 최적의 배합비로 나타났다 (기존 초고성능 콘크리트 성능의 95%이상의 성능). 또한 폐유리 골재 대체(10%)에 따른 성능저하에 대한 방안 두 가지를 적용한 초고성능 콘크리트의 성능이 물리성, 내구성 실험을 통하여 향상 된 것을 확인했다. 본 연구는 환경적으로 큰 문제가 되고 있는 폐유리를 골재 크기로 파쇄하여 초고성능 콘크리트에 적용함으로써 물리성, 내구성 실험을 평가하고 친환경적, 경제적이며 성능에서 우수한 새로운 초고성능 콘크리트의 개발 근거를 제공할 수 있을 것으로 기대된다.Chapter 1. Introduction 1 1.1 Background 1 1.1.1 Status of recycling of waste glass 1 1.1.2 Research trend of concrete for waste glass aggregate 3 1.2 Scope and Objectives 7 Chapter 2. Preliminary Study 8 2.1 Literature review 8 2.1.1 Waste glass aggregate for Concrete 8 2.1.2 Waste glass powder for Concrete 9 2.1.3 Waste glass powder for UHPC 9 2.2 Ultra High-Performance Concrete (UHPC) 11 2.3 Waste glass aggregate 13 2.4 Comparing Silica sand with Waste glass aggregate 14 Chapter 3. Test Plan 18 3.1 Test outline 18 3.1.1 Waste glass aggregate size and replacement rate 18 3.1.2 Outline 20 3.2 Mechanical properties test 22 3.2.1 Flow test 22 3.2.2 Compressive strength test 23 3.2.3 Flexural strength test 24 3.3 Durability test 26 3.3.1 Alkali – Silica Reaction (ASR) test 26 3.3.2 Absorption rate test 28 3.3.3 Acid resistance test 30 3.4 Scanning Electron Microscrope (SEM) 33 Chapter 4. Effect of Waste Glass Aggregate on Mechanical Properties 36 4.1 Introduction 36 4.2 Specimen study 36 4.3 Mechanical properties test 39 4.3.1 Flow test 39 4.3.2 Compressive strength test 41 4.3.3 Flexural strength test 43 4.4 Discussion 45 Chapter 5. Waste Glass Aggregate for UHPC with Steel Fiber 47 5.1 Introduction 47 5.2 Specimen study 47 5.3 Mechnical properties test 49 5.3.1 Flow test 49 5.3.2 Compressive strength test 51 5.3.3 Flexural strength test 53 5.4 Durability test 55 5.4.1 Alkali – Silica Reaction test (ASR) 55 5.4.2 Absorption rate test 57 5.4.3 Acid resistance test 59 5.5 Discussion 65 Chapter 6. Surface Modification of Waste Glass Aggregate for UHPC 68 6.1 Introduction 68 6.2 Specimen study 68 6.3 Mechanical properties test 71 6.3.1 Flow test 71 6.3.2 Compressive strength test 73 6.3.3 Flexural strength test 75 6.4 Durability test 77 6.4.1 Alkali -Silica Reaction (ASR) 77 6.4.2 Absorption rate test 79 6.4.3 Acid resistance test 81 6.5 Discussion 86 Chapter 7. Conclusions 88 References 92 Appendix 96 초 록 100석

    A Study on the effect of Korea-China FTA on export of products produced in Kaeseong Industrial Complex

    Get PDF
    Kaeseong Industrial Complex has been steadily developing since the creation of an industrial complex started June, in 2003. Today, it generates the production output of 39 million dollars per month hiring 54,000 North Korean laborers as a place of South-North Korean economic community. Also, it symbolizes a detente and peace of the Korean Peninsula. Kaeseong Industrial Complex, which has a lot of advantages such as the use of the same language, geographic proximity and a quality (and affordable) labor forces in the position of southern industries could be a new breakthrough or a land of opportunities especially to southern small and medium enterprises. Also, it could be the learning field of market economy in the position of northern industries and performed the role as the window of acquisition of foreign currencies. However, a stoppage of work in 2013 demonstrates a pending decision such as a risk on the Korean peninsula and insufficient legal and institutional devices, a shortage of labor supply in Kaeseong Industrial Complex, restriction of carrying out for the strategic goods or frustrated exports, which are non-economic issues, to solve for the development of Kaeseong Industrial Complex. Among the unsettled problems, exports by exploiting through overseas markets can be a prerequisite to activate the Kaeseong Industrial Complex. The products from Kaeseong Industrial Complex are accepted as products made in North Korea so that the overseas markets are actually blocked with the tariff of the high taxation. Especially, FTA which signed provisional contract between Korea and China on Jun, 1st, 2015, acknowledges the largest number of 310 products from Kaeseong Industrial Complex as South Koran products. The number of 267 products on the FTA between Korea and EU are admitted as South Korean products. The number of 108 products and 100 products are acknowledged as South Korean products on the FTA with each india and ASEAN. On the otherhand, FTA with China acknowledges all products from Kaeseong Industrial Complex as South Korean products. This study showes the effect of export to China on the products from Kaeseong Industrial Complex which are 90% of the products from Kaeseong Industrial Complex occupies textile, machine metal and electric electronic. Kenerally, in the position of Korea, the ratio of the chinese imports is quite high in the field of textile or clothes. The low price products can be expected to come into korean market and be expanded. It is expected to be suffered heavily. General machine field is expected to have a positive effect especially on the construction machine part and the field of the middle and small size of daily machine can receive the benefits by contracting FTA. Also, among these products, the products of Kaeseong Industrial Complex were conducted research for the competitiveness. Among 310 items which are acknowledged as korean products, mainly textile products, electronics or mechanical component are intensively received benefits from FTA between Korean and China. So they are expected to improve the export competitiveness with China. So the products of Kaeseong Industrial Complex are acknowledged as the Offshore processing area, which means they are acknowledged as products "made in South Korea". Therefore, Kaeseong Industrial Complex can establish a bridgehead to the huge mark, China and is expected to have the 2nd take-off stage. This study comes up with an effective counterplan to enter the chinese market for tenant Companies from Kaeseong Industrial Complex under the FTA between Korea and China such as the improvement of VAT and quality, effective business model, nurturing of experts for FTA. Additionally, not to miss the opportunity of the second take-off by the FTA between Korea and China, 5 plans which, are pursuing for separating principles on politics & economy, attracting foreign investment capital for Kaeseong Industrial Complex, constructing of logistics depot for Kaeseong Industrial Complex and consulting customized FTA for each companies are suggested for the support of the government level through this study.제 1 장 서론 1 제1절 연구 배경 및 목적 1 제2절 연구의 범위와 방법 4 제3절 연구의 구성 5 제 2 장 한‧중 FTA의 일반현황 6 제1절 FTA 의의 6 1. 경제통합과 FTA 6 2. FTA의 경제적 효과 8 3. 우리나라의 FTA 체결현황 9 제2절 한·중 FTA의 배경과 추진현황 14 1. 한·중 FTA의 추진배경 14 2. 한·중 FTA의 추진상황 18 제3절 한·중 FTA 주요특징과 의의 20 1. 한·중 FTA 주요특징 20 2. 한·중 FTA 체결의 의의 27 제 3 장 개성공단과 한중 FTA 29 제1절 개성공단의 현황 29 1. 개성공단 추진개요 29 2. 개성공단의 운영현황과 의미 32 제2절 개성공단의 문제점 40 1. 개성공단 운영에 따른 문제점 40 2. 개성공단 수출시 문제점 41 제3절 FTA 원산지기준 44 1. FTA 원산지개요 44 2. 특혜관세 적용 전제조건 47 3. 원산지 결정기준 49 제4절 FTA 협정별 개성공단관련 역외가공 규정 비교 57 1. 개성공단과 역외가공 규정 57 2. 협정별 개성공단관련 역외가공 58 제5절 한·중 FTA와 개성공단 역외가공 64 1. 품목별 원산지 규정 64 2. 개성공단 관련 규정 66 제 4 장 한·중 FTA의 개성공단 수출영향과 대응방안 68 제1절 한·중 FTA 체결과 개성공단 제품 수출 분석 68 1. 한·중 FTA와 개성공단 수출 68 2. 개성공단 품목별 對중국 수출에 미치는 영향분석 73 제2절 한·중 FTA에 따른 개성공단 대응방안 81 1. 한·중 FTA 체제에서의 개성공단 제품 수출 전략 81 2. 정부차원에서의 지원방안 85 제 5 장 결론 89 제1절 연구의 결과 요약 89 제2절 연구의 한계와 향후과제 92 ※ 참고문헌 9

    지역R&D 개편방향

    No full text

    초고성능 콘크리트의 폐유리 골재 적용 효과 및 분석

    Get PDF
    학위논문(석사) -- 서울대학교대학원 : 공과대학 건축학과, 2021.8. 문건웅.Waste glass is representing as an environmental problem all over the world. Since a lot of waste glass is buried in the landfill, it causes environmental pollution, and the recycling rate of waste glass has not reached the standard of the mandatory recycling amount. Therefore, as interest in the recycling of waste glass is increasing, the studies on the architectural use of waste glass have been actively progressed in recent years. Typically, waste glass is crushed into powder size to replace cement in concrete or into aggregate size to replace aggregate in concrete. However, in literature studies, the performance change according to the replacement rate of waste glass was not consistent. In addition, the ASR, which is a negative effect due to the waste glass, was not consistent too. While studies on the replacing of waste glass into normal concrete are in progress, only few studies have been progressed on the replacing of waste glass into Ultra High-Performance Concrete. Therefore, this thesis focused on replacing fine aggregate of Ultra High-Performance Concrete with waste glass aggregate. The performance is evaluated by comparing the silica sand (fine aggregate of UHPC) with waste glass aggregate. Since the waste glass aggregate has a smoother surface than silica sand, slip phenomenon is expected to occur, and performance degradation is concerned. Therefore, the tests were conducted with the replacement rate of waste glass aggregate, which is expected to affect the performance, as a parameter. In addition, the tests were conducted by applying two developments of performance degradation. In conclusion, as the replacement rate of waste glass aggregate increased, the performance of UHPC decreased. However, when considering eco-friendliness and economic, the replacement rate was 10% as the optimal replacing rate (more than 95% of the performance of the UHPC). In addition, it was confirmed that the performance of UHPC, which applied two developments for alleviating performance degradation due to the replacement of waste glass (10%), was improved through mechanical and durability tests.전 세계적으로 폐유리는 환경적인 문제로 부상하고 있다. 많은 폐유리가 매립지에 그대로 묻히기 때문에 환경적인 오염을 유발 시키고 또한 폐유리의 재활용율도 재활용 의무량 기준에 도달하지 못하고 있다. 따라서 폐유리의 재활용에 관한 관심이 증가하는 가운데 최근 폐유리의 건축적 활용에 대한 연구들이 활발히 진행되고 있다. 대표적으로 폐유리를 파우더 크기로 분쇄하여 콘크리트의 시멘트와 대체하거나 골재 크기로 파쇄하여 콘크리트 속 골재를 대체하는 연구로 나뉜다. 하지만 기존 논문들에서는 폐유리의 대체율에 따른 성능 변화가 일정하지 않았다. 그리고 폐유리로 인한 부정적 영향인 ASR 반응도 일정하지 않았다. 일반 콘크리트에 폐유리 혼입에 관한 연구는 진행중인 반면, 초고성능 콘크리트에 폐유리 혼입에 관한 연구는 거의 이루어지지 않았다. 따라서 본 연구에서는 초고성능 콘크리트의 잔골재를 폐유리골재로 대체하는 것에 초점을 두었다. 초고성능 콘크리트의 잔골재인 실리카 퓸과 폐유리 골재를 비교하면서 성능 확인이 필요하다. 폐유리 골재가 실리카 퓸에 비해 표면이 매끄럽기 때문에 slip 현상이 발생할 것으로 예상, 성능적 저하가 우려된다. 따라서 성능에 영향을 미칠 것으로 예상되는 폐유리 골재 대체율을 변수로 두고 실험하였다. 또한 성능저하에 두 가지 방안을 적용하여 실험하였다. 결론적으로, 폐유리 골재 대체율이 증가함에 따라 초고성능 콘크리트의 성능이 저하되었다. 하지만 친환경성, 경제성을 고려할 경우 대체율이 10%가 최적의 배합비로 나타났다 (기존 초고성능 콘크리트 성능의 95%이상의 성능). 또한 폐유리 골재 대체(10%)에 따른 성능저하에 대한 방안 두 가지를 적용한 초고성능 콘크리트의 성능이 물리성, 내구성 실험을 통하여 향상 된 것을 확인했다. 본 연구는 환경적으로 큰 문제가 되고 있는 폐유리를 골재 크기로 파쇄하여 초고성능 콘크리트에 적용함으로써 물리성, 내구성 실험을 평가하고 친환경적, 경제적이며 성능에서 우수한 새로운 초고성능 콘크리트의 개발 근거를 제공할 수 있을 것으로 기대된다.Chapter 1. Introduction 1 1.1 Background 1 1.1.1 Status of recycling of waste glass 1 1.1.2 Research trend of concrete for waste glass aggregate 3 1.2 Scope and Objectives 7 Chapter 2. Preliminary Study 8 2.1 Literature review 8 2.1.1 Waste glass aggregate for Concrete 8 2.1.2 Waste glass powder for Concrete 9 2.1.3 Waste glass powder for UHPC 9 2.2 Ultra High-Performance Concrete (UHPC) 11 2.3 Waste glass aggregate 13 2.4 Comparing Silica sand with Waste glass aggregate 14 Chapter 3. Test Plan 18 3.1 Test outline 18 3.1.1 Waste glass aggregate size and replacement rate 18 3.1.2 Outline 20 3.2 Mechanical properties test 22 3.2.1 Flow test 22 3.2.2 Compressive strength test 23 3.2.3 Flexural strength test 24 3.3 Durability test 26 3.3.1 Alkali – Silica Reaction (ASR) test 26 3.3.2 Absorption rate test 28 3.3.3 Acid resistance test 30 3.4 Scanning Electron Microscrope (SEM) 33 Chapter 4. Effect of Waste Glass Aggregate on Mechanical Properties 36 4.1 Introduction 36 4.2 Specimen study 36 4.3 Mechanical properties test 39 4.3.1 Flow test 39 4.3.2 Compressive strength test 41 4.3.3 Flexural strength test 43 4.4 Discussion 45 Chapter 5. Waste Glass Aggregate for UHPC with Steel Fiber 47 5.1 Introduction 47 5.2 Specimen study 47 5.3 Mechnical properties test 49 5.3.1 Flow test 49 5.3.2 Compressive strength test 51 5.3.3 Flexural strength test 53 5.4 Durability test 55 5.4.1 Alkali – Silica Reaction test (ASR) 55 5.4.2 Absorption rate test 57 5.4.3 Acid resistance test 59 5.5 Discussion 65 Chapter 6. Surface Modification of Waste Glass Aggregate for UHPC 68 6.1 Introduction 68 6.2 Specimen study 68 6.3 Mechanical properties test 71 6.3.1 Flow test 71 6.3.2 Compressive strength test 73 6.3.3 Flexural strength test 75 6.4 Durability test 77 6.4.1 Alkali -Silica Reaction (ASR) 77 6.4.2 Absorption rate test 79 6.4.3 Acid resistance test 81 6.5 Discussion 86 Chapter 7. Conclusions 88 References 92 Appendix 96 초 록 100석

    요트선수와 체육학과 학생과의 체력에 관한 비교

    No full text
    corecore