10 research outputs found

    ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ์— ์˜ํ•ด ์ฆํญ๋œ Fin Ge-Si ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ์˜ ์„ค๊ณ„์™€ ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๋ถ€(๋‚˜๋…ธ์œตํ•ฉ์ „๊ณต), 2014. 8. ๋ฐ•์˜์ค€.์‹ค๋ฆฌ์ฝ˜ ํฌํ† ๋‹‰์Šค(Si photonics)๋Š” ํฌํ† ๋‹‰ ์†Œ์ž๋“ค์„ CMOS์นฉ ์•ˆ์— ์ง‘์ ์‹œํ‚ค๋Š” ๊ฒƒ์— ๋Œ€ํ•œ ๋ถ„์•ผ๋กœ, ๋ชจ๋“ˆ๋ ˆ์ดํ„ฐ, ๋„ํŒŒ๋กœ, ๋””ํ…ํ„ฐ ๋“ฑ์„ ํฌํ•จํ•œ ๊ฑฐ์˜ ๋ชจ๋“  ํฌํ† ๋‹‰ ์†Œ์ž๋“ค์ด ์ƒ์—…์ ์œผ๋กœ ์ž˜ ๊ตฌํ˜„๋˜์–ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํšจ์œจ์ ์ธ 4์กฑ์›์†Œ ๊ณต์ •์— ์ž˜ ๋งž๋Š” ์นฉ๋‚ด์˜ ๊ด‘์›์€ ๊ทธ๋ ‡์ง€ ๋ชปํ•ด ํ•™๊ณ„์—์„œ ์•„์ง ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ์ค‘์ธ ์ƒํƒœ์ด๋‹ค. ๋‹คํ–‰ํžˆ ๊ฐ•ํ•˜๊ฒŒ ๋„ํ•‘๋œ ์ŠคํŠธ๋ ˆ์ธ์„ ๋ฐ›๋Š” ์ €๋งˆ๋Š„(Ge)์ด ์˜์‚ฌ ์ง์ ‘ ์ฒœ์ด ๋ฐด๋“œ ๊ฐญ ๋•Œ๋ฌธ์— ๋น›์„ ๋น„๊ต์  ํšจ์œจ์ ์œผ๋กœ ๋‚ผ ์ˆ˜ ์žˆ๊ณ , ์ด๋Ÿฌํ•œ ์„ฑ์งˆ์ด Ge๋ฅผ ์‹ค๋ฆฌ์ฝ˜ ํฌํ† ๋‹‰์Šค ์‹œ์Šคํ…œ์˜ ์ข‹์€ ๊ด‘์›ํ›„๋ณด๋กœ ๋งŒ๋“ค๊ฒŒ ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ €์ž๋Š” ํ•€(fin)๋ชจ์–‘์— ์–‘์ชฝ์— ๊ธˆ์† ๊ฒŒ์ดํŠธ๊ฐ€ ์žˆ์–ด์„œ ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ ๊ณต๋ช…(Surface plasmon resonance) ๋ชจ๋“œ์™€ ๊ฒฐํ•ฉํ•ด ๋น›์„ ์ฆํญ์‹œํ‚ค๊ณ , ๋‚˜์˜ค๋Š” ๋น›์„ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋Š” Ge-Si ์ด์ข…์ ‘ํ•ฉ ๋ฐœ๊ด‘๋‹ค์ด์˜ค๋“œ(LED)๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด ์ฆํญํšจ๊ณผ๋Š” ์†Œ์œ„ ํผ์…€ํšจ๊ณผ๋กœ ๋ถˆ๋ฆฌ๊ณ , ์ด ํšจ๊ณผ ๋•Œ๋ฌธ์— ๋ฐœ๊ด‘์›์˜ ์ž๋ฐœ ๋ฐœ๊ด‘(Spontaneous emission)๋ฅ ์ด ๊ธˆ์† ๋™๊ณต(metal cavity)์™€ ๊ฐ™์€ ์ž์ฒด์˜ ํ™˜๊ฒฝ์— ์˜ํ–ฅ์„ ๋ฐ›์•„ ๋ฐ”๋€” ์ˆ˜ ์žˆ๋‹ค. ์ €์ž๊ฐ€ ์ œ์•ˆํ•œ ์†Œ์ž์—์„œ ์ด ํšจ๊ณผ๋Š” ๊ธˆ์† ๊ฒŒ์ดํŠธ ํ‘œ๋ฉด์˜ ํ‘œํŽธ ํ”Œ๋ผ์ฆˆ๋ชฌ์— ์˜ํ•ด ์•ผ๊ธฐ๋œ๋‹ค. ์šฐ๋ฆฌ๋Š” ์šฐ๋ฆฌ์˜ ํ•€ ์†Œ์ž์—์„œ์˜ ์ด๋Ÿฌํ•œ ์ฆํญํšจ๊ณผ๋ฅผ ๊ณ„์‚ฐํ•˜์˜€๊ณ , ์†Œ์ž์˜ ํŠน์ •ํ•œ ์น˜์ˆ˜์—์„œ ์ž๋ฐœ ๋ฐœ๊ด‘์ด ์ตœ๋Œ€ํ™”๊ฐ€ ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ์šฐ๋ฆฌ๋Š” ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ ํšจ๊ณผ์˜ ์›๋ฆฌ์— ๋Œ€ํ•œ ๋” ๊นŠ์€ ์ดํ•ด๋ฅผ ์œ„ํ•ด 1์ฐจ์› ๋‹ค์ค‘์ธต ์‹œ์Šคํ…œ์˜ ๋ฌผ๋ฆฌ์— ๋Œ€ํ•ด ๋ฉด๋ฐ€ํžˆ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ „๊ธฐ์ , ๊ด‘ํ•™์  ์ธก๋ฉด์—์„œ์˜ ๊ฒŒ์ดํŠธ ๋ชจ๋“ˆ๋ ˆ์ด์…˜ ํšจ๊ณผ๋ฅผ ์ ๊ฒ€ํ•˜์˜€๋‹ค. ์†Œ์ž ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์šฐ๋ฆฌ๋Š” 5GHz์˜ ์†๋„์˜ ์ „๊ธฐ์ ์ธ ๋ชจ๋“ˆ๋ ˆ์ด์…˜์ด ๊ฐ€๋Šฅํ•จ์„ ๋ณด์˜€๋‹ค. ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ ๊ณต๋ช… ์„ผ์„œ๋ฅผ ํ†ตํ•œ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ๊ด‘ํ•™์ ์ธ ๋ชจ๋“ˆ๋ ˆ์ด์…˜์— ๋Œ€ํ•ด์„œ๋„ ํ™•์ธํ•ด ๋ณด์•˜๋‹ค. ์„ผ์„œ์˜ ๊ธˆ์†์ „๊ทน์— ์ „์••์„ ๊ฐ€ํ•œ ํ›„ ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ ๊ณต๋ช… ๊ฐ๋„์˜ ๋ณ€ํ™”๋ฅผ ๊ด€์ธกํ•˜์˜€๊ณ , ์‹คํ—˜๊ฒฐ๊ณผ๋ฅผ ์„ค๋ช…ํ•˜๋Š” ๋ชจ๋ธ์„ ์„ธ์šฐ๊ณ  ๋ณธ ์†Œ์ž์— ์ ์šฉํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ๊ด‘ํ•™์ ์ธ ์ธก๋ฉด์—์„œ์˜ ์ฆํญ์˜ ์กฐ์ ˆ์„ ์ž˜ ๋˜์ง€ ์•Š์Œ์„ ํ™•์ธํ–ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” Si photonics ์‹œ์Šคํ…œ์˜ ์นฉ ๋‚ด๋ถ€์˜, ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ์— ์˜ํ•ด ์ฆํญ๋œ LED ๋˜๋Š” ๋‚˜๋…ธ๋™๊ณต(nanocavity) ๋ ˆ์ด์ €์™€ ๊ฐ™์€ ๊ด‘์›์˜ ์„ค๊ณ„์™€ ์ตœ์ ํ™”๋ฅผ ํ•˜๋Š”๋ฐ ์žˆ์–ด์„œ ํฐ ๋„์›€์ด ๋  ๊ฒƒ์ด๋‹ค.Si photonics is a filed of studying integrating photonic devices into CMOS chip. All photonic components including modulators, waveguides, detectors are already available commercially but efficient group IV compatible on-chip light sources are still studied in academic world. Fortunately, heavily-doped strained Ge can emit light efficiently thanks to its pseudo direct band gap characteristic. This makes Ge a good candidate for on-chip monolithic light sources in Si photonics systems. In this paper, we propose fin-shaped Ge-Si heterojunction LED with metal gates, which can enhance light emission by coupling with surface plasmon resonant modes and modulate light emission from the LED. This enhancement effect is called the Purcell effect. Due to this effect, the spontaneous emission rate of an emitter can be changed by its environment like metal cavity. In our device, this effect is caused by surface plasmon in metal surface. We calculate this enhancement effect in our fin device, and show that a certain dimension of device can maximize the spontaneous emission. We thoroughly investigate the physical aspect of various 1D multilayer system to understand the physics of the surface plasmon effect in depth. We also check the possibility of gate modulation in both two aspect, i.e electrical modulation and optical modulation. By device simulation we can see the electrical modulation is possible and the modulation speed can reach 5 GHz. We conduct experiment using surface plasmon resonance sensor to check the possibility of the optical modulation. We applied voltage on the metal electrode and measure the SPR angle difference. We construct a model to explain our result and apply this model to the fin LED. This reveals that the gate bias hardly affect on enhancement factor, that is the optical modulation is not possible. This study will help in design and optimization of light sources including surface plasmon enhanced LED and nanocavity laser for on-chip light sources in Si photonics.Abstract Chapter 1. Introduction 1.1. Why Si photonics? 1.2. Ge as on-chip light source 1.3. Proposal of surface plasmon-enhanced fin Ge-LED Chapter 2. Theory and Formalism 2.1. Purcell effect 2.2. Surface plasmon 2.3. Spontaneous emission calculation 2.4. Transfer matrix method Chapter 3. Analysis Results and Discussion 3.1. Optimization of device design 3.2. Investigation of gate modulation โ€“ electrical 3.3. Investigation of gate modulation โ€“ optical 3.4. Physical analysis of 1D multilayer system 3.5. Other considerations Chapter 4. Conclusion 4.1. Summary 4.2. Future works References Abstract in KoreanDocto
    corecore