4 research outputs found

    츑정기기에 λ¬΄κ΄€ν•œ μ–‘μžμ‘°μ •κ³Ό μ–‘μž μ±„λ„μ‘°μ •μ˜ 검증

    No full text
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μžμ—°κ³Όν•™λŒ€ν•™ λ¬Όλ¦¬Β·μ²œλ¬Έν•™λΆ€(물리학전곡),2020. 2. μ •ν˜„μ„.λ³Έ 논문은 손싀을 κ²¬λ”œ 수 μžˆλŠ” μ–‘μžμ‘°μ •κ³Ό μ–‘μž 채널쑰정에 λŒ€ν•΄ 츑정기기에 λ¬΄κ΄€ν•œ 검증방법을 μ œκ³΅ν•˜λŠ” 것을 λͺ©ν‘œλ‘œ μ‚Όκ³  μžˆλ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” μ–‘μž λΉ„κ΅­μ†Œμ„±μ˜ κ°œλ…λ“€κ³Ό, 검증과정에 μžˆμ–΄μ„œ κ°€μ •λ˜λŠ” μ‹ λ’°μ„±μ˜ 여뢀에 따라 λΉ„κ΅­μ†Œμ„±μ˜ λ²”μ£Όλ₯Ό λΆ„λ₯˜ν•  수 μžˆμŒμ„ μ‚΄νŽ΄λ³Έλ‹€. 검증에 μ°Έμ—¬ν•˜λŠ” λͺ¨λ“  κ²€μ¦μžλ₯Ό μ‹ λ’°ν•  수 μžˆμ„λ•Œ κ²€μ¦ν•˜λŠ” μ–‘μž λΉ„κ΅­μ†Œμ„±μ„ μ–‘μžμ–½νž˜μ΄λΌκ³  ν•˜κ³ , λͺ¨λ“  κ²€μ¦μžλ₯Ό μ‹ λ’°ν•  수 없을 λ•Œ κ²€μ¦ν•˜λŠ” μ–‘μž λΉ„κ΅­μ†Œμ„±μ„ 벨 λΉ„κ΅­μ†Œμ„±μ΄λΌκ³  ν•˜λ©°, λͺ‡λͺ‡ κ²€μ¦μžλŠ” μ‹ λ’°ν•  수 μžˆμœΌλ‚˜ λ‚˜λ¨Έμ§€ κ²€μ¦μžλŠ” μ‹ λ’°ν•  수 μ—†λŠ” κ²½μš°μ— κ²€μ¦ν•˜λŠ” μ–‘μž λΉ„κ΅­μ†Œμ„±μ„ μ–‘μžμ‘°μ •μ΄λΌκ³  ν•œλ‹€. μ΄λŸ¬ν•œ κ΄€μ μ—μ„œ μ–‘μžμ‘°μ •μ€ 벨 λΉ„κ΅­μ†Œμ„±κ³Ό μ–‘μžμ–½νž˜μ˜ κ°€μš΄λ°μ— μœ„μΉ˜ν•˜λŠ” λΉ„κ΅­μ†Œμ„±μ΄λ‹€. λΉ„κ΅­μ†Œμ  ν˜„μƒμ„ 보여쀄 수 μžˆλŠ” μ–‘μžμƒνƒœμ˜ κ΄€μ μ—μ„œ λ§ν•œλ‹€λ©΄, μ–‘μžμ‘°μ •μ΄ κ°€λŠ₯ν•œ μƒνƒœλ“€μ˜ 집합은 벨 λΉ„κ΅­μ†Œμ  μƒνƒœλ“€μ˜ 집합보닀 크고, μ–‘μž μ–½νž˜μ΄ μžˆλŠ” μƒνƒœλ“€μ˜ 집합은 μ–‘μžμ‘°μ •μ΄ κ°€λŠ₯ν•œ μƒνƒœλ“€μ˜ 집합보닀 크닀. μ–΄λ– ν•œ 이유둜 인해 λͺ¨λ“  κ²€μ¦μžλ₯Ό μ‹ λ’°ν•  μˆ˜λŠ” μ—†λŠ” 상황이라면 μ–‘μžμ–½νž˜μ˜ 검증은 λΆˆκ°€λŠ₯ν•˜κ³ , λ”°λΌμ„œ λ‚¨κ²Œλ˜λŠ” μ„ νƒμ§€λŠ” μ–‘μžμ‘°μ •μ΄λ‚˜ 벨 λΉ„κ΅­μ†Œμ„±μœΌλ‘œ μ’ν˜€μ§„λ‹€. λ”°λΌμ„œ μ–‘μžμ‘°μ •μ€ νŠΉμ • κ²€μ¦μžλ₯Ό μ‹ λ’°ν•  수 μ—†λŠ” μƒν™©μ—μ„œ μ΅œλŒ€ν•œ λ§Žμ€ μ–‘μžμƒνƒœλ₯Ό μ„ νƒμ§€λ‘œ ν™•λ³΄ν•˜κ³  싢을 λ•Œ μœ μš©ν•˜κ²Œ ν™œμš©λ  수 μžˆλŠ” λΉ„κ΅­μ†Œμ„±μ˜ 범주이닀. ν•œνŽΈ μ–‘μžμ–½νž˜κ³Ό μ–‘μžμ‘°μ •μ˜ 검증에 μžˆμ–΄ νŠΉμ • κ²€μ¦μžλ₯Ό μ‹ λ’°ν•  수 μžˆμ–΄μ•Ό ν•œλ‹€λŠ” μš”κ΅¬μ‘°κ±΄μ„ μ™„ν™”ν•˜μ—¬, νŠΉμ • μ–‘μžμƒνƒœλ₯Ό 잘 생성할 수 μžˆμ–΄μ•Ό ν•œλ‹€λŠ” μš”κ΅¬μ‘°κ±΄μœΌλ‘œ λŒ€μ²΄ν•˜λŠ” 검증 λ°©μ•ˆμ΄ μ‘΄μž¬ν•œλ‹€. 츑정기기에 λ¬΄κ΄€ν•œ 검증이라고 λΆˆλ¦¬λŠ” μ΄λŸ¬ν•œ 검증 방법은 λΉ„κ΅­μ†Œμ„± λ†€μ΄μ—μ„œ μž…λ ₯값을 κ³ μ „ 정보가 μ•„λ‹Œ μ–‘μž μƒνƒœλ‘œ λ°”κΎΈλŠ” λ°©μ‹μœΌλ‘œ 이루어진닀. λ†€μ΄μ˜ μ°Έμ—¬μžλ“€μ€ μž…λ ₯된 μ–‘μžμƒνƒœλ₯Ό λͺ…ν™•ν•˜κ²Œ ꡬ뢄 ν•  방법이 μ—†μœΌλ―€λ‘œ, λΉ„κ΅­μ†Œμ  μ–‘μžμƒνƒœλ₯Ό κ³΅μœ ν•˜μ§€ μ•ŠλŠ”λ‹€λ©΄ λ†€μ΄μ—μ„œ 높은 점수λ₯Ό 얻지 λͺ»ν•˜κ²Œ 되고 λ”°λΌμ„œ λΉ„κ΅­μ†Œμ„±μ˜ 검증을 톡과할 수 μ—†λ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” 츑정기기에 λ¬΄κ΄€ν•œ 검증방법을 손싀을 κ²¬λ”œ 수 μžˆλŠ” μ–‘μžμ‘°μ •μ— μ ‘λͺ©ν•˜μ˜€λ‹€. μ΄λ ‡κ²Œ κ΅¬μ„±λœ μ–‘μžμ‘°μ •μ˜ 검증은 손싀을 κ²¬λ”œ 수 μžˆλŠ” νŠΉμ„±κ³Ό 츑정기기에 λ¬΄κ΄€ν•œ νŠΉμ„±μ„ λͺ¨λ‘ 가지며, μ‘°μ •λ˜λŠ” κ²€μ¦μžμ—κ²Œμ„œ μ‘°μ •ν•˜λŠ” κ²€μ¦μžμ—κ²Œ 정보 전솑을 ν—ˆμš©ν•˜λ”λΌλ„ μœ νš¨ν•˜κ³ , 심지어 μ–‘μž μƒνƒœμ˜ 생성이 λΆˆμ™„μ „ν•˜λ”λΌλ„ μ—¬μ „νžˆ μœ νš¨ν•¨μ„ 보일 수 μžˆλ‹€. λΆˆμ™„μ „ν•œ μ–‘μžμƒνƒœμ˜ 생성이 μ–‘μžμ‘°μ •μ˜ 검증에 λ―ΈμΉ˜λŠ” 영ν–₯은 두 큐빗 μƒν™©μ—μ„œ μ–‘ν™”ν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ μ–‘μžμ‘°μ •μ˜ 검증은 손싀에 κ²¬λ””λŠ” νŠΉμ„±μ΄ λΉ„λŒ€μΉ­μ μΈλ°, μ‘°μ •λ˜λŠ” κ²€μ¦μžκ°€ κ²ͺλŠ” 손싀은 검증에 영ν–₯을 λΌμΉ˜μ§€ μ•ŠμœΌλ‚˜ μ‘°μ •ν•˜λŠ” κ²€μ¦μžκ°€ κ²ͺλŠ” 손싀을 견디기 μœ„ν•΄μ„œλŠ” μ–‘μžμ‘°μ •μ˜ κ²€μ¦λ°©μ•ˆμ„ 적절히 μž¬κ΅¬μ„±ν•΄μ•Όλ§Œ ν•œλ‹€. μ΄λŸ¬ν•œ λΉ„λŒ€μΉ­μ„±μ€ λΉ„λŒ€μΉ­μ μΈ μ–‘μž μ •λ³΄μ²˜λ¦¬ κ³Όμ œμ— μ‘μš©λ  수 있으며, 손싀에 κ²¬λ”œ 수 μžˆλŠ” νŠΉμ„±κ³Ό 츑정기기에 λ¬΄κ΄€ν•œ νŠΉμ„±μ€ 작음이 많고 ν†΅μ œν•  수 μ—†λŠ” ν™˜κ²½μ—μ„œ λΉ„κ΅­μ†Œμ„±μ˜ 검증을 κ΅¬ν˜„ν•˜λŠ” 데 도움이 될 것이라고 κΈ°λŒ€λœλ‹€. ν•œνŽΈ μš°λ¦¬λŠ” μ–‘μž λΉ„κ΅­μ†Œμ„±μ˜ κ°œλ…μ„ μ–‘μž μ±„λ„λ‘œ ν™•μž₯ν•˜μ—¬, 츑정기기에 λ¬΄κ΄€ν•œ μ–‘μž μ±„λ„μ‘°μ •μ˜ 방법을 μ œμ•ˆν•˜μ˜€λ‹€. 이λ₯Ό μœ„ν•΄ μƒνƒœκ°€ μ•„λ‹Œ 집합체 κ°œλ…μ„ μ±„νƒν•˜μ—¬ λ¬Έμ œμ— μ ‘κ·Όν•˜μ˜€κ³ , 졜-μžλ―Έμ˜¬μ½”ν”„μŠ€ν‚€ λ™ν˜•μ‚¬μƒμ„ μ΄μš©ν•˜μ—¬ 채널 집합체가 μ–‘μžμ‘°μ • κ°€λŠ₯ν•˜λ‹€λŠ” 사싀과 μŒλŒ€ μ–‘μžμƒνƒœ 집합체가 μ–‘μžμ‘°μ • κ°€λŠ₯ν•˜λ‹€λŠ” 사싀이 λ™μΉ˜μ‘°κ±΄μž„μ„ 증λͺ…ν•˜μ˜€λ‹€. κ·Έ λ’€ 잘 μ •λ¦¬λœ 츑정기기에 독립적인 κ²€μ¦λ°©μ•ˆμ„ μŒλŒ€ μ–‘μžμƒνƒœμ— μ μš©ν•˜μ—¬ 츑정기기에 독립적인 채널 μ‘°μ •μ˜ 검증을 μ™„μˆ˜ν•œλ‹€. λ‚˜μ•„κ°€ λΆˆμ™„μ „ν•œ μ–‘μžμƒνƒœμ˜ 생성이 츑정기기에 독립적인 검증에 λ―ΈμΉ˜λŠ” 영ν–₯을 λΆ„μ„ν•˜μ˜€λŠ”λ°, 특히 졜-μžλ―Έμ˜¬μ½”ν”„μŠ€ν‚€ λ™ν˜•μ‚¬μƒμ„ μ–»λŠ”λ° μ“°μ΄λŠ” μ–‘μžμƒνƒœμ— μ§‘μ€‘ν•˜μ˜€λ‹€. κ·Έ κ²°κ³Ό λͺ©ν‘œλ‘œ μ‚Όμ•˜λ˜ μˆœμˆ˜ν•œ μ–‘μžμƒνƒœλ₯Ό 생성해내지 λͺ» ν•˜κ³  λ‹€λ₯Έ μ–‘μžμƒνƒœλ₯Ό λ§Œλ“€λ”λΌλ„, 두 계 μ‚¬μ΄μ˜ μˆœμˆ˜ν•œ μ–‘μžμƒνƒœκ°€ 꽉 μ°¬ 슈미트 랭크λ₯Ό κ°€μ§€κΈ°λ§Œ ν•œλ‹€λ©΄ κ²€μ¦κ³Όμ •μ—λŠ” μ–΄λ– ν•œ λ¬Έμ œλ„ μΌμœΌν‚€μ§€ μ•ŠμŒμ„ λ³΄μ˜€κ³ , κ΅­μ†Œμ μΈ 작음과 μ„žμ΄λŠ” 경우 μ–΄λŠ μ •λ„μ˜ 작음의 λΉ„μœ¨κΉŒμ§€λŠ” κ²¬λ”œ 수 μžˆμŒμ„ λ³΄μ˜€λ‹€. μ΄λ•Œ κ²¬λ”œ 수 μžˆλŠ” 작음의 λΉ„μœ¨μ˜ ν•˜ν•œμ€ 이미 잘 μ•Œλ €μ Έ μžˆλŠ” μ‘°μ • μ–΅μ…ˆλ„λ‘œ κ²°μ •λœλ‹€. 좔가적인 연ꡬ λ°œμ „λ°©ν–₯을 μœ„ν•˜μ—¬ μ–‘μžμ‘°μ • μ–΅μ…ˆλ„ 및 그와 μœ μ‚¬ν•œ ν˜•νƒœμ˜ λ¬Όλ¦¬λŸ‰κ³Ό, μ–‘μžμ‘°μ •λ° 졜-μžλ―Έμ˜¬μ½”ν”„μŠ€ν‚€ λ™ν˜•μ‚¬μƒκ³Ό κ΄€λ ¨λœ λͺ‡ 가지 λ―Έν•΄κ²° λ¬Έμ œλ“€μ„ λ˜μ Έλ‘μ—ˆλ‹€. 츑정기기에 λ¬΄κ΄€ν•œ μ–‘μž μ±„λ„μ‘°μ •μ˜ 검증은 ν†΅μ œν•  수 μ—†κ³  작음이 λ§Žμ€ μƒν™©μ—μ„œ μ–‘μž μ±„λ„μ˜ μ–‘μžμ •λ³΄κ°€ λˆ„μΆœλ˜λŠ” 상황을 ν™•μΈν•˜λŠ”λ° μœ μš©ν•˜κ²Œ μ‚¬μš©λ  κ²ƒμœΌλ‘œ κΈ°λŒ€λœλ‹€.This dissertation aims to provide measurement-device-independent verification protocol for loss tolerant quantum steering and quantum channel steering. We review the concepts of quantum nonlocality, and see that we can classify it into the three depending on the assumption that the party who participates in verification protocol is trustworthy. If the quantum nonlocality is verified when every party is trusted, we call it quantum entanglement, if it is verified when every party is untrusted, we call it Bell's nonlocality, and if it is verified when some parties are trusted while the others are not, we call it quantum steering. In this respect, quantum steering lies in the intermediate position between Bell's nonlocality and quantum entanglement. In view of quantum states which can display nonlocal phenomenon, we can say that the set of steerable states is larger than the set of Bell nonlocal state, and the set of entangled states is larger than the set of steerable states. For some situations that we cannot trust everybody, entanglement verification is impossible, thus our option is steering or Bell's nonlocality. Therefore, quantum steering can be useful when some party cannot be trusted and we need broad choice of quantum states to exploit quantum nonlocality. In the meantime, there is another verification protocol of quantum nonlocality that we can relieve the trust assumption at the cost of quantum state generation. This protocol, called measurement-device-independent verification protocol, is constructed with nonlocal game approach where classical input is replaced with quantum states. The participants of the game can distinguish the input states only if they share quantum nonlocal states, thus their success in the game, obtaining the high score, is an indicator of quantum nonlocality of the shared states. We apply measurement-device-independent protocol for loss-tolerant steering inequality. As a result, we construct quantum steering verification protocol to be measurement-device-independent and loss-tolerant. The verification is valid even if we allow one-way communication from the steered party to the steering party and generation of input quantum states is imperfect. The effect of imperfect generation of input quantum states to the verification protocol is quantified for two qubit setup. The resultant steering criterion is asymmetric with respect to measurement efficiencies because the measurement efficiency of the steered party does not affect the verification protocol while that of the steering party does. Therefore, to make the steering verification loss-tolerant with respect to the steering party, we have to reformulate it appropriately according to the heralding efficiency of the steering party. The measurement-device-independent and loss-tolerant properties can help implement steering verification in uncontrollable and lossy environment, and asymmetric property will be useful for asymmetric quantum information processing tasks. Moreover, we extend the concept of quantum nonlocality to quantum channels, and propose measurement-device-independent verification protocol of quantum channel steering. For this purpose, we adopt assemblage approach and utilize Choi-Jamiolkowski isomorphism. We prove that channel assemblage is steerable if and only if its dual state assemblage is steerable. We then apply canonical method of measurement-device-independent verification protocol to the obtained dual state assemblage. In this way we accomplish measurement-device-independent verification of channel steering. We further inspect the effect of imperfect quantum state generation, especially for which is used to obtain Choi-Jamiolkowski isomorphism. As a result, we show that the channel-state duality of steering holds as long as the quantum state is bipartite pure state with full Schmidt rank. Furthermore, mixture of the quantum state with local noise is tolerable up to some proportion, which is bounded from below by the steering robustness. For further researches, some open questions regarding the Choi-Jamiolkowski isomorphism and steering are listed. We expect that the results can be exploited to check leakage of quantum information in quantum channels under lossy and uncontrollable environment.I. Introduction 1 II. Quantum Nonlocality 5 2.1 Introduction 5 2.2 Category of Quantum Nonlocality 11 2.3 Extended Concepts of Quantum Steering 17 III. Measurement-device-independent verification of quantum nonlocality 21 3.1 Introduction 21 3.2 Nonlocal Game 21 3.3 Semi-Quantum Nonlocal Game 25 3.4 Quantum Refereed Steering Game 32 IV. Measurement-Device-Independent and Loss Tolerant Verification of Quantum Steering 39 4.1 Introduction 39 4.2 Loss Tolerant QRS game 40 4.2.1 Loss Tolerant Steering Inequality 40 4.2.2 Loss Tolerant QRS game 43 4.3 Remarks 48 V. Channel Steering 51 5.1 Incoherent channel 51 5.2 Channel Steering 53 5.3 Remarks 66 VI. Conclusion 69 Bibliography 85 Abstract in Korean 85Docto
    corecore