15 research outputs found

    ์†Œ์™€ ๋ผ์ง€์˜ ๊ตฌ์กฐ ๋ณ€์ด์˜ ํŠน์„ฑ ๋ฐ ์ง‘๋‹จ ๊ฐ„ ์ฐจ์ด ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ์ƒ๋ฌผ์ •๋ณดํ•™์ „๊ณต, 2023. 8. ๊น€ํฌ๋ฐœ.Structural variation (SV) is a class of genomic alteration that involves segments of DNA longer than 1 kb. SVs can affect gene expression, function, and evolution, and are associated with various phenotypes and diseases. In this study, I investigated the population differentiation and characteristics of SVs in cattle and swine, two important domesticated animals with complex evolutionary histories. I used various genomic approaches to analyze SV in three research chapters that focused on copy number variation (CNV), a type of SV that involves deletion or duplication of DNA segments. Literature review about SV and approaches for identifying SV are summarized in the first chapter. The second chapter examined the population differentiated CNV of Bos taurus, Bos indicus, and their African hybrids, revealing the impact of hybridization and selection on CNV diversity. The third chapter compared the CNV between Eurasian wild boar and domesticated pig populations, uncovering the signatures of domestication and adaptation on CNV patterns. The fourth chapter presented the chromosome-level genome assembly of Hanwoo, a Korean native cattle breed, and the pangenome graph of 14 B. taurus assemblies. The study identified Hanwoo-specific regions and structural variants that may be related to phenotypic traits and adaptation. These chapters collectively demonstrated the power and utility of population genetics of SVs for studying the evolution and disease of cattle and swine and provided valuable resources and insights for future research.๊ตฌ์กฐ ๋ณ€์ด(structural variation, SV)๋Š” 1 kb๋ณด๋‹ค ๊ธด DNA ์˜์—ญ์˜ ๋ณ€ํ™”๋ฅผ ํฌํ•จํ•˜๋Š” ์œ ์ „์ฒด ๋ณ€์ด์˜ ํ•œ ์ข…๋ฅ˜์ด๋‹ค. ๊ตฌ์กฐ ๋ณ€์ด๋Š” ์œ ์ „์ž ๋ฐœํ˜„, ๊ธฐ๋Šฅ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฉฐ ๋‹ค์–‘ํ•œ ํ˜•์งˆ๊ณผ ์งˆ๋ณ‘๊ณผ ๊ด€๋ จ๋˜์–ด ์žˆ์œผ๋ฉฐ, ์ง„ํ™”์˜ ์—ญ์‚ฌ ์ถ”์ •์„ ์œ„ํ•œ ๋‹จ์„œ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ณต์žกํ•œ ์ง„ํ™” ์—ญ์‚ฌ๋ฅผ ๊ฐ€์ง„ ๋‘ ๊ฐ€์ง€ ์ค‘์š”ํ•œ ๊ฐ€์ถ•์ธ ์†Œ์™€ ๋ผ์ง€์˜ ๊ตฌ์กฐ ๋ณ€์ด์˜ ์ง‘๋‹จ ์œ ์ „ํ•™์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์œ ์ „์ฐจ ์ƒ์˜ ๋‹ค์–‘ํ•œ ๊ตฌ์กฐ ๋ณ€์ด ์ค‘์—์„œ, ํŠนํžˆ ๊ตฌ๊ฐ„์˜ ๊ฒฐ์‹ค ๋˜๋Š” ์ค‘๋ณต์„ ํฌํ•จํ•˜๋Š” ๊ตฌ์กฐ ๋ณ€์ด์˜ ํ•œ ํ˜•ํƒœ์ธ ๋ณต์ œ ์ˆ˜ ๋ณ€์ด(copy number variation, CNV)์— ์ดˆ์ ์„ ๋งž์ถ˜ 3๊ฐœ์˜ ์ฃผ์ œ๋“ค์„ ์—ฐ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์œ ์ „์ฒดํ•™์ , ์ƒ๋ฌผ์ •๋ณดํ•™์  ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•˜์˜€๋‹ค. ์ œ1์žฅ์—์„œ๋Š” ๊ตฌ์กฐ๋ณ€์ด์™€ ๊ตฌ์กฐ๋ณ€์ด์˜ ์ง‘๋‹จ ์œ ์ „ํ•™์  ํŠน์„ฑ ๋ฐ ๋ถ„์„ ๋ฐฉ๋ฒ• ๋“ฑ ๋ณธ ๋…ผ๋ฌธ์— ํฌํ•จ๋œ ๊ธฐ๋ณธ ์ง€์‹๊ณผ ์—ฐ๊ตฌ ๋™ํ–ฅ์„ ์ •๋ฆฌํ•˜์˜€๋‹ค. ์ œ2์žฅ์—์„œ๋Š” Bos taurus, Bos indicus ๋ฐ ๊ทธ๋“ค์˜ ๊ต์žก์œผ๋กœ ํ˜•์„ฑ๋œ ์•„ํ”„๋ฆฌ์นด ์†Œ๋“ค ๊ฐ„์˜ ์ฐจ๋ณ„ํ™”๋œ ๋ณต์ œ ์ˆ˜ ๋ณ€์ด๋ฅผ ์กฐ์‚ฌํ•˜์—ฌ ๊ต์žก๊ณผ ์„ ํƒ์ด CNV ๋‹ค์–‘์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ฐํ˜”๋‹ค. ์ œ3์žฅ์—์„œ๋Š” ์œ ๋ผ์‹œ์•„ ๋ฉง๋ผ์ง€์™€ ๊ฐ€์ถ•ํ™”๋œ ๋ผ์ง€ ์ง‘๋‹จ ๊ฐ„์˜ ๋ณต์ œ ์ˆ˜ ๋ณ€์ด๋ฅผ ๋น„๊ตํ•˜์—ฌ ๊ฐ€์ถ•ํ™”์™€ ์ ์‘์— ๋”ฐ๋ฅธ CNV ํŒจํ„ด์˜ ํŠน์ง•์„ ๋ฐœ๊ฒฌํ•˜์˜€๋‹ค. ์ œ4์žฅ์—์„œ๋Š” ํ•œ์šฐ์˜ ์—ผ์ƒ‰์ฒด ์ˆ˜์ค€์˜ ๊ณ ํ’ˆ์งˆ genome assembly์™€ 14๊ฐœ Bos taurus ์œ ์ „์ฒด๋“ค์˜ pangenome graph๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ ํ˜•์งˆ๊ณผ ์ ์‘๊ณผ ๊ด€๋ จ๋  ์ˆ˜ ์žˆ๋Š” ํ•œ์šฐ ํŠน์ด์  ์˜์—ญ๊ณผ ๊ตฌ์กฐ ๋ณ€์ด๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์†Œ์™€ ๋ผ์ง€์˜ ์ง„ํ™”์™€ ์งˆ๋ณ‘์„ ์—ฐ๊ตฌํ•˜๊ธฐ ์œ„ํ•œ ๊ตฌ์กฐ ๋ณ€์ด์˜ ์ง‘๋‹จ ๊ฐ„ ์ฐจ์ด์™€ ํŠน์„ฑ์„ ์—ฐ๊ตฌํ•˜์—ฌ, ์ง„ํ™”์  ๊ด€์ ์˜ ํ•ด์„์„ ์ œ๊ณตํ•˜์˜€์œผ๋ฉฐ, ์ด๋Š” ํ–ฅํ›„ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ ๊ท€์ค‘ํ•œ ์ž๋ฃŒ์™€ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•˜์˜€๋‹ค.ABSTRACT I CONTENTS III LIST OF TABLES V LIST OF FIGURES V CHAPTER 1. LITERATURE REVIEW 1 1.1. Structural variation and population genetics 2 1.2. Methods used to study structural variation of different populations in a same species. 2 CHAPTER 2. POPULATION DIFFERENTIATED COPY NUMBER VARIATION OF BOS TAURUS, BOS INDICUS AND THEIR AFRICAN HYBRIDS 4 2.1. Abstract 5 2.2. Introduction 6 2.3. Materials and Methods 8 2.4. Results ๏ผ“๏ผ 2.5. Discussion ๏ผ”๏ผ” CHAPTER 3. POPULATION DIFFERENTIATED COPY NUMBER VARIATION BETWEEN EURASIAN WILD BOAR AND DOMESTICATED PIG POPULATIONS ๏ผ•๏ผ’ 3.1. Abstract ๏ผ•๏ผ“ 3.2. Introduction ๏ผ•๏ผ” 3.3. Materials and Methods ๏ผ•๏ผ— 3.4. Results ๏ผ˜๏ผ 3.5. Discussion ๏ผ‘๏ผ‘๏ผ‘ CHAPTER 4. CHROMOSOME-LEVEL GENOME ASSEMBLY OF KOREAN NATIVE CATTLE AND PANGENOME GRAPH OF 14 BOS TAURUS ASSEMBLIES ๏ผ‘๏ผ‘๏ผ— 4.1. Abstract ๏ผ‘๏ผ‘๏ผ˜ 4.2. Background & Summary ๏ผ‘๏ผ‘๏ผ™ 4.3. Materials and Methods ๏ผ‘๏ผ’๏ผ‘ 4.4. Data Records ๏ผ‘๏ผ”๏ผ 4.5. Technical Validation ๏ผ‘๏ผ”๏ผ 4.6. Usage Notes ๏ผ‘๏ผ”๏ผ” CHAPTER 5. GENERAL DISCUSSION ๏ผ‘๏ผ”๏ผ— REFERENCES ๏ผ‘๏ผ”๏ผ™ ๊ตญ๋ฌธ์ดˆ๋ก ๏ผ‘๏ผ–9๋ฐ•

    A Sequential Approach for an Asymmetric Extraction Case in Lingual Orthodontics

    Get PDF
    To resolve the dental asymmetries, it is important to determine the treatment midline with facial midline as a reference and the anchorage value at each quadrant. Then the correction of midline and molar key should be conducted from the initiation of treatment. Therefore, the simulation of desired tooth movement prior to treatment is an essential part of orthodontic diagnosis. Moreover, considering that many adult patients have various degree of periodontal breakdown, a strategic tooth movement in order not to cause undesired round tripping is utmost important. Recently, virtual simulation have been developed and introduced to visualize three-dimensional desirable tooth movement to achieve treatment goals. In this report, we present a sequential approach for an asymmetric extraction case involving torque control with a lever arm in lingual orthodontics.ope

    ๊ณ ์„ฑ๋Šฅ ์กฐ๋ช…์šฉ ๋ฐฑ์ƒ‰ ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ๋ฅผ ์œ„ํ•œ ๋งˆ์Šคํฌ๋ฆฌ์Šค ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ ๊ธฐ๋ฐ˜์˜ ํ˜•๊ด‘์ฒด ๊ท ์ผ ์ฝ”ํŒ… ๋ฐฉ๋ฒ•

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 2. ๊ถŒ์„ฑํ›ˆ.In this dissertation, I introduce a novel conformal phosphor coating system for white Light emitting diodes (LEDs). In this system, I use maskless lithography technique to improve coating quality. And, making up for its weakness, I design and develop a novel exposure system called dual exposure image processed maskless lithography system (DE-IPML). The key idea is to confine the coating area to light arrival range and resin applied range. By actively regulating the light path using maskless lithograpy, it is possible to control the coating thickness of LEDs side wall. Also by confining the height of phosphor-resin mixture, I can control the top coating thickness of LEDs. First, I describe the importance of white LED, especially conformal phosphor coated white LED. And, I introduce two conventional techniques our group had developed, which are basic technologies of this novel coating system. Lastly, the main concept of this research is described, which combine the phosphor coating technique and lithography technique. Then, a conformal, chip-level phosphor coating technique using IPML is presented. Owing to the ability of the IPML system to perform real-time recognition of LED placement and to generate a corresponding pattern, conformal phosphor coating is successfully performed on an LED array on a blue tape. The fabricated white LEDs provide a uniform color distribution that can be controlled by altering the coating thickness and the phosphor concentration. As the blue tape used in this experiment represents a conventional form of the LED chip delivery in packaging processes, the use of this method minimizes the revision needed for the packaging process. In addition, as color binning can be carried out prior to the packaging process, the waste and packaging cost needed to supply LEDs with a target white color is reduced in this method. However, the coating method has some limitations, so the limitations are introduced. The problems are shape distortion and difficulty of image processing, and they are usually revealed in the condition which contains high phosphor concentration. So, an improved lithography technique, dual exposure IPML (DE-IPML), is proposed to solve the problem. DE-IPML setup is designed and manufactured actually. pc-WLED chips is produced by the new lithography setup, and improved physical and optical properties are measured and compared with those of the chips produced by normal IPML setup. As the result, we can see that DE-IPML improves the optical properties of pc-WLEDs dramatically compared with the chips fabricated IPML chips. Coating LED array with large area using DE-IPML coating process is also tried. For this, I resolve two main problems, which are related with alignment of array and optics. Then, I perform the coating process of 20 ร— 20 chip array and measured their properties. The throughput of the process is about 50,000 ~ 100,000 chips per day. To show the extensibility of this technology, various types of materials are demonstrated. Various phosphors and resins are tested for investigating the possibility to be used in DE-IPML coating system. Shape formation and long term stability are examined primarily. The accessability of material for commercialization is also considered. And, some modified processes to apply other materials are introduced. To improve the usability of the coating systems, more advance research of materials is needed in future work. I envision that this approach greatly improves the manufacturing process of white LED and also offers opportunity in that domestic LED industry advance the market of high quality white LED manufacturing.Abstract iv Contents viii List of Figures xi List of Tables xxi Introduction 1 1.1 Phosphor-Converted White Light Emitting Diode (pc-WLED) 3 1.2 Opto-fluidic Maskless Lithography (OFML) 7 1.3 Image Processed Maskless Lithography (IPML) 11 1.4 Main Concept: Conformal Phosphor Coating using Maskless Lithography for Phosphor-Converted White Light Emitting Diodes 15 Conformal Phosphor Coating on LED Using IPML 19 2.1 Previous methods and defects 20 2.1.1 The Importance of Conformal Phosphor Coating on LED 20 2.1.2 Importance of Contact Opening 22 2.1.3 Previous Conformal Phosphor Coating Methods and Defects 24 2.2 Conformal Phosphor Coating on LED Using IPML (IPML Coating Process) 27 2.2.1 IPML Coating Process 27 2.2.2 Patterning Results of IPML Coating Process 34 2.3 Optical Properties of pc-WLEDs 43 2.3.1 Some Optical Properties to Evaluate Quality of White LEDs 43 2.3.2 Measured Optical Properties of pc-WLEDs 57 2.4 Conclusion 63 Conformal Phosphor Coating on LED Using DE-IPML 64 3.1 Limitations of IPML Coating process 65 3.2 Concept and Design of Dual Exposure IPML (DE-IPML) 72 3.3 Phosphor coating on LED using DE-IPML 80 3.3.1 Physical Properties of pc-WLED Fabricated by DE-IPML 80 3.3.2 Optical Properties of pc-WLED Fabricated by DE-IPML 83 3.3.3 Result of Large Area Coating to Improve Productivity 87 3.4 Conclusion 92 Various Materials for Coating 93 4.1 Various Resins for Coating 94 4.2 Various Phosphors for Coating 100 4.6 Conclusion 106 Conclusion and Future Work 107 Bibliography 110 Abstract in Korean 116Docto

    (An)Analysis of dance class attitude according to the characteristics of students

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ฒด์œก๊ต์œก๊ณผ,2005.Maste

    ๊ณต์ ์—ฐ๊ธˆ์˜ ๋„์ž…๊ณผ ์ถœ์‚ฐ์œจ ์ €ํ•˜

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ฒฝ์ œํ•™๋ถ€,2010.2.Maste

    Displacement pattern of anterior segment depending on the lingual lever arm design

    No full text
    ์น˜์˜ํ•™๊ณผ/์„์‚ฌ์„ค์ธก ๋ ˆ๋ฒ„์•”์€ ์„ค์ธก๊ต์ •์‹œ ์ „์น˜์˜ ์น˜์ถ• ์กฐ์ ˆ์„ ์œ„ํ•œ ํž˜ ๋ฒกํ„ฐ์˜ ๋ฐฉํ–ฅ๊ณผ ์œ„์น˜๋ฅผ ์กฐ์ ˆํ•˜๋Š” ์œ ์šฉํ•œ ์žฅ์น˜์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ตœ๊ทผ์˜ 3์ฐจ์› ์œ ํ•œ์š”์†Œ ์—ฐ๊ตฌ์— ๋”ฐ๋ฅด๋ฉด ๋ ˆ๋ฒ„์•”์˜ ๊ธธ์ด๊ฐ€ ๊ธธ์–ด์งˆ ๊ฒฝ์šฐ ํ˜ธ์„ ์˜ leverage effect์— ์˜ํ•ด ์›์น˜ ์•Š๋Š” ๊ฒฌ์น˜์˜ ํ˜‘์ธก ๋ณ€์œ„ ๋ฐ ์ „์น˜์˜ ์„ค์ธก๊ฒฝ์‚ฌ๊ฐ€ ์ผ์–ด๋‚จ์ด ๋ณด๊ณ ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ๋ ˆ๋ฒ„์•”์— splint wire๋ฅผ ์ถ”๊ฐ€ํ•ด์•ผ ํ•  ํ•„์š”์„ฑ์ด ์ œ๊ธฐ๋˜์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ƒ์•… ์ „์น˜๋ถ€ ์น˜์ฒด์ด๋™์„ ์œ„ํ•œ ์ตœ์ ์˜ ๋ ˆ๋ฒ„์•” ๋””์ž์ธ์„ ์ฐพ๊ธฐ ์œ„ํ•˜์—ฌ ์ „์น˜๋ถ€ ํ›„๋ฐฉ ๊ฒฌ์ธ์‹œ ์„ค์ธก ๋ ˆ๋ฒ„์•”์˜ splint ์—ฌ๋ถ€์— ๋”ฐ๋ฅธ ์ฐจ์ด๋ฅผ ๋น„๊ตํ•˜๊ณ , ์ถ”๊ฐ€์ ์œผ๋กœ ํ˜ธ์„ ์˜ ๊ฐ•์„ฑ๊ณผ ์น˜๊ทผ๋ง‰์˜ ๋ฌผ์„ฑ์— ๋”ฐ๋ฅธ ์ฐจ์ด๋ฅผ ํ™•์ธํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๋ก ์„ ์–ป์—ˆ๋‹ค. 1.์ƒ์•… ์ค‘์ ˆ์น˜์™€ ์ธก์ ˆ์น˜์˜ ์น˜์ฒด์ด๋™์€ Splint model์˜ ๊ฒฝ์šฐ ๊ตฌ๊ฐœ๊ฒฝ์‚ฌ๋ฉด์˜ ๋ฏธ๋‹ˆ์Šคํฌ๋ฅ˜์—์„œ ๊ฒฌ์ธ์‹œ ๋ ˆ๋ฒ„์•” ๊ธธ์ด๊ฐ€ 16.85mm์ธ ๊ฒฝ์šฐ, ์ •์ค‘๊ตฌ๊ฐœ๋ถ€์˜ ๋ฏธ๋‹ˆ์Šคํฌ๋ฅ˜์—์„œ ๊ฒฌ์ธ์‹œ ๋ ˆ๋ฒ„์•” ๊ธธ์ด๊ฐ€ 19.01mm์ธ ๊ฒฝ์šฐ์— ๋‚˜ํƒ€๋‚ฌ๋‹ค. Non-splint model์˜ ๊ฒฝ์šฐ 20mm ๋ ˆ๋ฒ„์•”์—์„œ๋„ ๋ฏธ์•ฝํ•œ ์„ค์ธก ๊ฒฝ์‚ฌ์ด๋™์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. 2.Splint model์—์„œ Non-splint model์— ๋น„ํ•ด ๊ฒฌ์น˜ ๋ฐ ๊ตฌ์น˜์˜ ํ˜‘์ธก ๋ณ€์œ„๋Ÿ‰์ด 1/2-1/4 ๊ฐ์†Œํ•˜์˜€๋‹ค.3.Splint model์˜ ๊ฒฝ์šฐ Non-splint model์— ๋น„ํ•ด ํ˜ธ์„ ์˜ ์ข…๋ฅ˜๋‚˜ ๋ฏธ๋‹ˆ์Šคํฌ๋ฅ˜์˜ ์œ„์น˜๊ฐ€ ์น˜์•„ ๋ณ€์œ„ ์–‘์ƒ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์ด ๋” ์ž‘๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค.4.ํ˜ธ์„ ์˜ ๊ฐ•์„ฑ์— ๋”ฐ๋ฅธ ์ฐจ์ด ๋น„๊ต์‹œ .016x.022 ์Šคํ…Œ์ธ๋ฆฌ์Šค ํ˜ธ์„ ๊ณผ .018x.025 ์Šคํ…Œ์ธ๋ฆฌ์Šค ํ˜ธ์„ ์— ๋”ฐ๋ฅธ ์ „ํ›„๋ฐฉ ์น˜์•„์ด๋™ ์–‘์ƒ์—๋Š” ๊ฑฐ์˜ ์ฐจ์ด๊ฐ€ ์—†์—ˆ์œผ๋‚˜, .018x.025 ํ˜ธ์„ ์—์„œ ๊ฒฌ์น˜ ๋ฐ ๊ตฌ์น˜๋ถ€์˜ ํ˜‘์ธก ๋ณ€์œ„๋Ÿ‰์ด ์•ฝ 1/3-1/4 ๊ฐ์†Œํ•˜์˜€๋‹ค. ์ฃผํ˜ธ์„ ์„ ๊ฐ•์ฒด๋กœ ์„ค์ •ํ•œ ๊ฒฝ์šฐ ํž˜ ๋ฒกํ„ฐ์™€ ํ•ด๋‹น ์น˜์•„ ๋ถ„์ ˆ์˜ ์ €ํ•ญ์ค‘์‹ฌ๊ณผ์˜ ๊ด€๊ณ„์— ๋”ฐ๋ผ ์น˜์•„๊ตฐ์˜ ํ›„๋ฐฉ์ด๋™ ๋ฐ ํšŒ์ „์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค.5.์ƒ์•… ์ „์น˜๋ถ€์˜ ์น˜๊ทผ์ด๋™์„ ์œ„ํ•ด์„œ๋Š” ํ˜ธ์„ ์˜ ๊ฐ•์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚ค๊ณ  ๋ถ„์ ˆํ˜ธ์„ ์ƒ์—์„œ ์•ฝ 20mm์˜ ๋ ˆ๋ฒ„์•”์„ splintํ•˜์—ฌ ์ ์šฉํ•˜๋Š” ๊ฒƒ์ด ์ถ”์ฒœ๋œ๋‹ค.6.์น˜๊ทผ๋ง‰์˜ ๋ฌผ์„ฑ์น˜๊ฐ€ ์ดˆ๊ธฐ ์น˜์•„ ๋ณ€์œ„ ์–‘์ƒ์— ์ค‘์š”ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ์€ ๊ฐ•์„ฑ์˜ ์น˜๊ทผ๋ง‰์—์„œ ๋ ˆ๋ฒ„์•”์˜ ๊ธธ์ด ๋ณ€ํ™”์— ๋”ฐ๋ผ ์น˜์•„ ์ด๋™์–‘์ƒ์ด ๋” ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ณ€ํ•˜๊ณ  ์น˜์ฒด์ด๋™์„ ์œ„ํ•ด ๋” ๊ธด ๋ ˆ๋ฒ„์•”์ด ํ•„์š”ํ•จ์„ ๊ณ ๋ คํ•˜์—ฌ์•ผ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ๋ ˆ๋ฒ„์•”์˜ splinting์ด ์ฃผํ˜ธ์„ ์˜ ๋ณ€ํ˜•์„ ๊ฐ์†Œ์‹œํ‚ค๊ณ , ์ƒ์•… ์ „์น˜์˜ ์น˜์ฒด ์ด๋™์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ์ฃผํ˜ธ์„ ์˜ ๊ฐ•์„ฑ๊ณผ ์น˜๊ทผ๋ง‰์˜ ๋ฌผ์„ฑ์น˜์— ๋”ฐ๋ฅธ ์น˜์•„์ด๋™ ์–‘์ƒ์˜ ๋ณ€ํ™”๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.์„ค์ธก ๋ ˆ๋ฒ„์•”์€ ์„ค์ธก๊ต์ •์‹œ ์ „์น˜์˜ ์น˜์ถ• ์กฐ์ ˆ์„ ์œ„ํ•œ ํž˜ ๋ฒกํ„ฐ์˜ ๋ฐฉํ–ฅ๊ณผ ์œ„์น˜๋ฅผ ์กฐ์ ˆํ•˜๋Š” ์œ ์šฉํ•œ ์žฅ์น˜์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ตœ๊ทผ์˜ 3์ฐจ์› ์œ ํ•œ์š”์†Œ ์—ฐ๊ตฌ์— ๋”ฐ๋ฅด๋ฉด ๋ ˆ๋ฒ„์•”์˜ ๊ธธ์ด๊ฐ€ ๊ธธ์–ด์งˆ ๊ฒฝ์šฐ ํ˜ธ์„ ์˜ leverage effect์— ์˜ํ•ด ์›์น˜ ์•Š๋Š” ๊ฒฌ์น˜์˜ ํ˜‘์ธก ๋ณ€์œ„ ๋ฐ ์ „์น˜์˜ ์„ค์ธก๊ฒฝ์‚ฌ๊ฐ€ ์ผ์–ด๋‚จ์ด ๋ณด๊ณ ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ๋ ˆ๋ฒ„์•”์— splint wire๋ฅผ ์ถ”๊ฐ€ํ•ด์•ผ ํ•  ํ•„์š”์„ฑ์ด ์ œ๊ธฐ๋˜์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ƒ์•… ์ „์น˜๋ถ€ ์น˜์ฒด์ด๋™์„ ์œ„ํ•œ ์ตœ์ ์˜ ๋ ˆ๋ฒ„์•” ๋””์ž์ธ์„ ์ฐพ๊ธฐ ์œ„ํ•˜์—ฌ ์ „์น˜๋ถ€ ํ›„๋ฐฉ ๊ฒฌ์ธ์‹œ ์„ค์ธก ๋ ˆ๋ฒ„์•”์˜ splint ์—ฌ๋ถ€์— ๋”ฐ๋ฅธ ์ฐจ์ด๋ฅผ ๋น„๊ตํ•˜๊ณ , ์ถ”๊ฐ€์ ์œผ๋กœ ํ˜ธ์„ ์˜ ๊ฐ•์„ฑ๊ณผ ์น˜๊ทผ๋ง‰์˜ ๋ฌผ์„ฑ์— ๋”ฐ๋ฅธ ์ฐจ์ด๋ฅผ ํ™•์ธํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๋ก ์„ ์–ป์—ˆ๋‹ค. 1.์ƒ์•… ์ค‘์ ˆ์น˜์™€ ์ธก์ ˆ์น˜์˜ ์น˜์ฒด์ด๋™์€ Splint model์˜ ๊ฒฝ์šฐ ๊ตฌ๊ฐœ๊ฒฝ์‚ฌ๋ฉด์˜ ๋ฏธ๋‹ˆ์Šคํฌ๋ฅ˜์—์„œ ๊ฒฌ์ธ์‹œ ๋ ˆ๋ฒ„์•” ๊ธธ์ด๊ฐ€ 16.85mm์ธ ๊ฒฝ์šฐ, ์ •์ค‘๊ตฌ๊ฐœ๋ถ€์˜ ๋ฏธ๋‹ˆ์Šคํฌ๋ฅ˜์—์„œ ๊ฒฌ์ธ์‹œ ๋ ˆ๋ฒ„์•” ๊ธธ์ด๊ฐ€ 19.01mm์ธ ๊ฒฝ์šฐ์— ๋‚˜ํƒ€๋‚ฌ๋‹ค. Non-splint model์˜ ๊ฒฝ์šฐ 20mm ๋ ˆ๋ฒ„์•”์—์„œ๋„ ๋ฏธ์•ฝํ•œ ์„ค์ธก ๊ฒฝ์‚ฌ์ด๋™์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. 2.Splint model์—์„œ Non-splint model์— ๋น„ํ•ด ๊ฒฌ์น˜ ๋ฐ ๊ตฌ์น˜์˜ ํ˜‘์ธก ๋ณ€์œ„๋Ÿ‰์ด 1/2-1/4 ๊ฐ์†Œํ•˜์˜€๋‹ค.3.Splint model์˜ ๊ฒฝ์šฐ Non-splint model์— ๋น„ํ•ด ํ˜ธ์„ ์˜ ์ข…๋ฅ˜๋‚˜ ๋ฏธ๋‹ˆ์Šคํฌ๋ฅ˜์˜ ์œ„์น˜๊ฐ€ ์น˜์•„ ๋ณ€์œ„ ์–‘์ƒ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์ด ๋” ์ž‘๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค.4.ํ˜ธ์„ ์˜ ๊ฐ•์„ฑ์— ๋”ฐ๋ฅธ ์ฐจ์ด ๋น„๊ต์‹œ .016x.022 ์Šคํ…Œ์ธ๋ฆฌ์Šค ํ˜ธ์„ ๊ณผ .018x.025 ์Šคํ…Œ์ธ๋ฆฌ์Šค ํ˜ธ์„ ์— ๋”ฐ๋ฅธ ์ „ํ›„๋ฐฉ ์น˜์•„์ด๋™ ์–‘์ƒ์—๋Š” ๊ฑฐ์˜ ์ฐจ์ด๊ฐ€ ์—†์—ˆ์œผ๋‚˜, .018x.025 ํ˜ธ์„ ์—์„œ ๊ฒฌ์น˜ ๋ฐ ๊ตฌ์น˜๋ถ€์˜ ํ˜‘์ธก ๋ณ€์œ„๋Ÿ‰์ด ์•ฝ 1/3-1/4 ๊ฐ์†Œํ•˜์˜€๋‹ค. ์ฃผํ˜ธ์„ ์„ ๊ฐ•์ฒด๋กœ ์„ค์ •ํ•œ ๊ฒฝ์šฐ ํž˜ ๋ฒกํ„ฐ์™€ ํ•ด๋‹น ์น˜์•„ ๋ถ„์ ˆ์˜ ์ €ํ•ญ์ค‘์‹ฌ๊ณผ์˜ ๊ด€๊ณ„์— ๋”ฐ๋ผ ์น˜์•„๊ตฐ์˜ ํ›„๋ฐฉ์ด๋™ ๋ฐ ํšŒ์ „์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค.5.์ƒ์•… ์ „์น˜๋ถ€์˜ ์น˜๊ทผ์ด๋™์„ ์œ„ํ•ด์„œ๋Š” ํ˜ธ์„ ์˜ ๊ฐ•์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚ค๊ณ  ๋ถ„์ ˆํ˜ธ์„ ์ƒ์—์„œ ์•ฝ 20mm์˜ ๋ ˆ๋ฒ„์•”์„ splintํ•˜์—ฌ ์ ์šฉํ•˜๋Š” ๊ฒƒ์ด ์ถ”์ฒœ๋œ๋‹ค.6.์น˜๊ทผ๋ง‰์˜ ๋ฌผ์„ฑ์น˜๊ฐ€ ์ดˆ๊ธฐ ์น˜์•„ ๋ณ€์œ„ ์–‘์ƒ์— ์ค‘์š”ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ์€ ๊ฐ•์„ฑ์˜ ์น˜๊ทผ๋ง‰์—์„œ ๋ ˆ๋ฒ„์•”์˜ ๊ธธ์ด ๋ณ€ํ™”์— ๋”ฐ๋ผ ์น˜์•„ ์ด๋™์–‘์ƒ์ด ๋” ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ณ€ํ•˜๊ณ  ์น˜์ฒด์ด๋™์„ ์œ„ํ•ด ๋” ๊ธด ๋ ˆ๋ฒ„์•”์ด ํ•„์š”ํ•จ์„ ๊ณ ๋ คํ•˜์—ฌ์•ผ ํ•œ๋‹ค.๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ๋ ˆ๋ฒ„์•”์˜ splinting์ด ์ฃผํ˜ธ์„ ์˜ ๋ณ€ํ˜•์„ ๊ฐ์†Œ์‹œํ‚ค๊ณ , ์ƒ์•… ์ „์น˜์˜ ์น˜์ฒด ์ด๋™์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ์ฃผํ˜ธ์„ ์˜ ๊ฐ•์„ฑ๊ณผ ์น˜๊ทผ๋ง‰์˜ ๋ฌผ์„ฑ์น˜์— ๋”ฐ๋ฅธ ์น˜์•„์ด๋™ ์–‘์ƒ์˜ ๋ณ€ํ™”๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.ope

    Sancaituhui and Science in 17th Century China(II)

    No full text
    corecore