28 research outputs found

    ฮณ-Aminobutyric Acid Production and Angiotensinโ€“I Converting Enzyme Inhibitory Activity of Fermented Soybean Containing Sea Tangle by the Co-culture of Lactobacillus brevis with Aspergillus oryzae

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‹ํ’ˆ์˜์–‘ํ•™๊ณผ, 2015. 2. ์ง€๊ทผ์–ต.๊ฐ๋งˆ์•„๋ฏธ๋…ธ๋ถ€ํ‹ฐ๋ฅด์‚ฐ (ฮณ-aminobutyric acid, GABA)์€ ์ค‘์ถ”์‹ ๊ฒฝ๊ณ„์˜ ์–ต์ œ์„ฑ ์‹ ๊ฒฝ์ „๋‹ฌ ๋ฌผ์งˆ๋กœ ํ•ญ ๊ณ ํ˜ˆ์••, ์•Œ์ฝ”์˜ฌ ๋Œ€์‚ฌ ์ด‰์ง„, ํ•ญ ์ŠคํŠธ๋ ˆ์Šค ๋“ฑ ๋‹ค์–‘ํ•œ ์ƒ๋ฆฌ ํ™œ์„ฑ์ด ์•Œ๋ ค์ ธ ์žˆ๊ณ , ์•ˆ์ง€์˜คํ…์‹ -I ์ „ํ™˜ ํšจ์†Œ ์ €ํ•ด์ œ (angiotensin-I converting enzyme inhibitors, ACEI)๋Š” ์•ˆ์ง€์˜คํ…์‹ -I ์ „ํ™˜ ํšจ์†Œ์˜ ํ™œ์„ฑ์„ ์–ต์ œํ•˜์—ฌ ํ˜ˆ์•• ์ƒ์Šน ๋ฌผ์งˆ์ธ ์•ˆ์ง€์˜คํ…์‹ -โ…ก์˜ ์ƒ์„ฑ์„ ์ค„์ด๊ณ  ํ˜ˆ์••๊ฐ•ํ•˜์„ฑ ํŽฉํƒ€์ด๋“œ์ธ ๋ธŒ๋ž˜๋””ํ‚ค๋‹Œ (bradykinin)์˜ ๋ถ„ํ•ด๋ฅผ ์–ต์ œํ•˜๋Š” ์—ญํ• ์„ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” GABA์™€ ACE inhibitory activity์˜ ๊ณตํ†ต์ ์ธ ํ•ญ ๊ณ ํ˜ˆ์•• ๊ธฐ๋Šฅ์„ฑ์— ์ฃผ๋ชฉํ•˜์—ฌ, ์‹ํ’ˆ ์œ ๋ž˜ ๋ฏธ์ƒ๋ฌผ์„ ์ด์šฉํ•œ ACE ์ €ํ•ด ํ™œ์„ฑ๊ณผ GABA์˜ ํ•จ๋Ÿ‰์ด ์ฆ๋Œ€๋œ ์ฝฉ ๋ฐœํšจ์‹ํ’ˆ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜์˜€๋‹ค. ๋‹ค์‹œ๋งˆ๋Š” ์ฒœ์—ฐ ๊ธ€๋ฃจํƒ์‚ฐ ์›๋ฃŒ๋กœ์„œ GABA ์ƒ์„ฑ์„ ์ฆ๋Œ€์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๋ฐœํšจ ์กฐ๊ฑด์œผ๋กœ ์ถ”๊ฐ€ํ•˜์˜€๊ณ  ์ฝฉ, ๋‹ค์‹œ๋งˆ ํ˜ผํ•ฉ๋ฌผ์„ 7 ์ผ๊ฐ„ ๋‹จ๊ธฐ ๋ฐœํšจ ์‹œ GABA ์ƒ์„ฑ์„ ์œ„ํ•œ ์ตœ์  ๋ฐœํšจ ์กฐ๊ฑด์€ Aspergillus oryzae FMB S46471 (๋ฐœํšจ ์‹œ์ž‘์ผ ์ ‘์ข…, 104 spores/mL) ๊ณผ Lactobacillus brevis GABA 100 (๋ฐœํšจ 3 ์ผ์ฐจ ์ ‘์ข…, 1%108 CFU/mL, v/v)์˜ ๊ณต๋™ ๋ฐฐ์–‘, 30โ„ƒ, pH 5.0, ๋‹ค์‹œ๋งˆ ๋ถ„๋ง ์ฒจ๊ฐ€, ์ˆ˜๋ถ„ ์ฒจ๊ฐ€๋Ÿ‰ 30 mL ์ด์ƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. GABA ์ƒ์„ฑ์„ ์œ„ํ•œ ์ตœ์  ๋ฐœํšจ ์กฐ๊ฑด์„ ์ ์šฉํ–ˆ์„ ๋•Œ ์ฝฉ, ๋‹ค์‹œ๋งˆ ํ˜ผํ•ฉ ๋ฐœํšจ๋ฌผ์˜ GABA ํ•จ๋Ÿ‰์€ ์ตœ๋Œ€ 1.9 g/kg์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด ์กฐ๊ฑด์—์„œ ACE ์ €ํ•ด ํ™œ์„ฑ์€ ์ตœ๋Œ€ 96%๋ฅผ ๋ณด์˜€๊ณ , 1:100 ๋น„์œจ๋กœ ํฌ์„ ํ›„ ์†Œํ™” ํšจ์†Œ๋ฅผ ์ฒ˜๋ฆฌํ•œ ํ›„์—๋„ ์•ฝ 40%์˜ ์ €ํ•ด ํ™œ์„ฑ์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ์ฝฉ, ๋‹ค์‹œ๋งˆ ํ˜ผํ•ฉ ๋ฐœํšจ๋ฌผ์˜ ๊ฐ€์ˆ˜๋ถ„ํ•ด๋ฌผ์—์„œ ๋ถ„์ž๋Ÿ‰ 3 kDa ๋ฏธ๋งŒ ๋ถ„ํš์€ IC50 ๊ฐ€ 11.69 ฮผg/mL๋กœ ACE ์ €ํ•ด ํ™œ์„ฑ์ด ๊ฐ€์žฅ ๋†’์•˜๊ณ , nanoLC-ESI/MS/MS๋กœ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ 9 ์ข…์˜ ํŽฉํƒ€์ด๋“œ๊ฐ€ ์žˆ์Œ์„ ํ™•์ธ ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœํ•œ ์ฝฉ, ๋‹ค์‹œ๋งˆ ํ˜ผํ•ฉ ๋ฐœํšจ๋ฌผ์€ GABA ํ•จ๋Ÿ‰ ๋ฐ ACE ์ €ํ•ด ํ™œ์„ฑ์ด ๋†’์€ ์ ์„ ํ† ๋Œ€๋กœ ํ˜ˆ์•• ์กฐ์ ˆ์„ ์œ„ํ•œ ๊ธฐ๋Šฅ์„ฑ ์‹ํ’ˆ ์†Œ์žฌ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.๊ตญ๋ฌธ์ดˆ๋ก i ๋ชฉ ์ฐจ iii ๊ทธ๋ฆผ๋ชฉ์ฐจ iv ํ‘œ ๋ชฉ ์ฐจ v ์•ฝ์–ด์š”์•ฝ vi 1. ์„œ ๋ก  1 2. ์‹คํ—˜์žฌ๋ฃŒ ๋ฐ ๋ฐฉ๋ฒ• 3 2.1. ์‚ฌ์šฉ ๊ท ์ฃผ ๋ฐ ๋ฐฐ์–‘ ์กฐ๊ฑด 3 2.2. ์ฝฉ, ๋‹ค์‹œ๋งˆ ํ˜ผํ•ฉ ๋ฐœํšจ๋ฌผ์˜ ์ œ์กฐ 5 2.3. ์ฝฉ, ๋‹ค์‹œ๋งˆ ํ˜ผํ•ฉ ๋ฐœํšจ๋ฌผ์—์„œ GABA ์ƒ์„ฑ ์ตœ์  ๋ฐœํšจ 7 2.4. HPLC๋ฅผ ์ด์šฉํ•œ ์œ ๋ฆฌ ์•„๋ฏธ๋…ธ์‚ฐ ์ •๋Ÿ‰๋ถ„์„ 12 2.5. ์ฝฉ, ๋‹ค์‹œ๋งˆ ํ˜ผํ•ฉ ๋ฐœํšจ๋ฌผ์˜ ACE ์ €ํ•ด ํ™œ์„ฑ ์ธก์ • 14 2.6. in vitro ์†Œํ™” ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 16 2.7. ACE ์ €ํ•ด ํ™œ์„ฑ ๋ถ„ํš์˜ ๊ตฌ์„ฑ ํŽฉํƒ€์ด๋“œ ํ™•์ธ 17 3. ์‹คํ—˜๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ 18 3.1. A. oryzae, B. subtilis์™€ L. brevis์˜ GABA ์ƒ์„ฑ๋Šฅ ๋น„๊ต 18 3.2. ์ฝฉ, ๋‹ค์‹œ๋งˆ ํ˜ผํ•ฉ ๋ฐœํšจ๋ฌผ์—์„œ GABA ์ƒ์„ฑ ์ตœ์  ๋ฐœํšจ ์กฐ๊ฑด 20 3.3. HPLC๋ฅผ ์ด์šฉํ•œ ์œ ๋ฆฌ ์•„๋ฏธ๋…ธ์‚ฐ ์ •๋Ÿ‰ ๋ถ„์„ 31 3.4. ์ฝฉ, ๋‹ค์‹œ๋งˆ ํ˜ผํ•ฉ ๋ฐœํšจ๋ฌผ์˜ ACE ์ €ํ•ด ํ™œ์„ฑ 34 3.5. ACE ์ €ํ•ด ํ™œ์„ฑ ๋ถ„ํš์˜ ๊ตฌ์„ฑ ํŽฉํƒ€์ด๋“œ ํ™•์ธ 38 4. ์š”์•ฝ ๋ฐ ๊ฒฐ๋ก  41 ์ฐธ๊ณ ๋ฌธํ—Œ 42 Abstract in English 47Maste

    The ecological efficiency of wood resources utilization: focusing on carbon storage effects for climate change mitigation in Korea

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ๋†๋ฆผ์ƒ๋ฌผ์ž์›ํ•™๋ถ€, 2021. 2. ์œค์—ฌ์ฐฝ.As the 17th UN Climate Change Convention agreed on the carbon storage effect of domestic wood products, carbon value was added along with the economic value of wood resources in use. Timber resources are a representative provisioning service among ecosystem services of forests, and they were recognized as having a trade-off of reducing the provision of environmental services such as regulating, support and cultural services during harvesting of wood. However, as the climate regulating function of domestic wood resources emerged, the importance of understanding how to utilize domestic wood resources efficiently is being emphasized in the consumption sector. This study aims to provide policy information for sustainable use and response to climate change through ecologically efficient use of wood resources. The flow of domestic timber input from the manufacturing stage to the industrial stage was analyzed from the point of view of cascading use and the efficiency of the sawmill was analyzed according to the source and species of roundwood. Based on these usage patterns, an alternative effort to further increase carbon storage was set as a scenario and the potential for carbon reduction was calculated to provide policy information in support of climate change mitigation. A policy direction to increase future carbon stocks was suggested through comparing the carbon accounting method between previous Tier 2 method and Tier 3 method which can reflect current efficient use of domestic wood. Around 72% of the input from domestic roundwood was supplied to MDF and woodchip which are crushed for wooden products and only 14% of roundwood was supplied to sawn wood production. Sawn wood has the highest carbon potential with a long life of more than 50 years. However, in Korea, 58% of sawn wood is used for civil engineering and transportation; both are short-lived industries, manifesting the use of sawn wood with low carbon storage in Korea. For recycling, more than two-thirds of the raw material of particle board manufacturing was found to use recycled wood. On the other hand, MDF has low recycled wood material and uses domestic roundwood immediately crushed to produce MDF. About one-third of domestic timber was directly used as an energy source in Korea. It was found that there are significant differences in the amount of carbon stocks estimated according to Tier 2 and Tier 3 methods. Using the Tier 2 method, it was found that after 30 years, the carbon stocks were more than twice that of the Tier 3 method. This is due to the fact that the half-life of 35 years for sawn wood and 25 years for wood-based panel is the international average usage pattern with long and medium-life of building materials and furniture materials compared to the usage pattern of domestic wood with short and medium life in Korea. For this reason, it was found that the results of the Tier 2 method overestimated carbon stocks. There is a large gap between the international average of half-life with the Tier 2 method and the disposal rate applied in the Tier 3 method that reflects the usage pattern of Korean domestic wood. Although currently Tier 2 method has been adapted to account carbon stocks of harvested wood products in Korea, there still remains a risk in terms of accuracy. The half-life of the international average of Tier 2 provided by IPCC, sawn wood is 35 years, while the half-life is 2.5 years considering the ratio of input to the industry according to the usage pattern in Korea. In the case of wood-based panel, the half-life of the Tier 2 method was 25 years, but it was found that the half-life for wood-based panel according to the usage pattern in Korea was 8.8 years. The results of scenarios show that the carbon reduction potential in the early-term (2030) and mid-term (2050) was highest in the policy scenario of A.2.1, which promotes both quantitative and qualitative increases. Scenarios B4 and B4C, which improved qualitative use by increasing the usage time of domestic wood without increasing the amount of roundwood input, were found to have a carbon reduction potential close to that of the A.2.1 scenario. In the long-term half (2080), the B4C scenario was found to have a higher reduction potential than the A3 scenario, which showed the second highest carbon reduction in the early and mid-term. Scenarios with improved efficiency of domestic timber use (B4C) were ranked higher than those with quantitative increase(A3). This study went beyond the existing Tier 2 level carbon accounting to account for carbon stocks at the Tier 3 level. The actual state of domestic wood use and the accounting method were evaluated in terms of carbon efficiency, and the carbon reduction potential was compared according to the wood use scenario. This study develops a knowledge system on how to measure the carbon value, a function of wood's climate control, and evaluates the use of wood in terms of the efficiencies that must be achieved for sustainable resource use. Furthermore, it provides policy information to establish a successful response to climate change.๋ณธ ์—ฐ๊ตฌ๋Š” ํƒ„์†Œ ์ €์žฅ ๊ด€์ ์—์„œ ํ˜„์žฌ์˜ ๊ตญ์‚ฐ ๋ชฉ์žฌ ์ž์›์˜ ์ด์šฉ ํ˜•ํƒœ๋ฅผ ํ‰๊ฐ€ํ•˜๊ณ , ๋ฏธ๋ž˜์˜ ํšจ์œจ์„ฑ์„ ์ฆ๊ฐ€๋ฅผ ์œ„ํ•œ ํƒ„์†Œ ๊ณ„์ • ๋ฐฉ๋ฒ• ํ‰๊ฐ€ ๋ฐ ์‹œ๋‚˜๋ฆฌ์˜ค ๋ถ„์„์„ ํ†ตํ•ด ๊ตญ์‚ฐ ๋ชฉ์žฌ ์ž์›์˜ ์ง€์†๊ฐ€๋Šฅํ•œ ์ด์šฉ๊ณผ ๊ธฐํ›„๋ณ€ํ™” ๋Œ€์‘์„ ์œ„ํ•œ ์ •์ฑ… ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ตญ์‚ฐ ์›๋ชฉ์ด ์ œ์กฐ ๋‹จ๊ณ„์—์„œ ์‚ฐ์—… ๋‹จ๊ณ„๊นŒ์ง€ ํˆฌ์ž…๋˜๋Š” ํ๋ฆ„์„ ์ถ”์ ํ•˜๊ณ  ์ œ์žฌ๋ชฉ์˜ ์ƒ์‚ฐ ํšจ์œจ์„ฑ์„ ์›๋ชฉ์˜ ์‚ฐ์ง€(๊ตญ์‚ฐ/์ˆ˜์ž…)์™€ ์ˆ˜์ข…(์นจ์—ฝ์ˆ˜/ํ™œ์—ฝ์ˆ˜)์— ๋”ฐ๋ฅธ ์ฐจ์ด๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ œ์žฌ๋ชฉ์˜ ์ƒ์‚ฐ ํ˜„ํ™ฉ์„ ๋ถ„์„ํ•จ์œผ๋กœ์จ ์ˆœ์ฐจ์ ์ธ ๋ชฉ์žฌ ์ด์šฉ์„ ์œ„ํ•œ ์šฐ๋ฆฌ๋‚˜๋ผ ์‚ฐ๋ฆผ ๊ด€๋ฆฌ ๋ถ€๋ฌธ์˜ ์—ญํ• ์„ ๊ณ ์ฐฐํ•˜์˜€๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์šฐ๋ฆฌ๋‚˜๋ผ ๋ชฉ์žฌ ์ด์šฉ์— ๋”ฐ๋ฅธ ์ˆ˜ํ™•๋œ ๋ชฉ์ œํ’ˆ ํƒ„์†Œ์ถ•์ ๋Ÿ‰์„ ๊ณ„์ •ํ•˜๊ณ  ๋ฐฉ๋ฒ•๊ฐ„ ๊ณ„์ • ๊ฒฐ๊ณผ ์ฐจ์ด๋ฅผ ๋น„๊ตํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋กœ ์ฒซ์งธ, ํƒ„์†Œ ๊ด€์ ์—์„œ ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ๊ตญ์‚ฐ ๋ชฉ์žฌ ์ด์šฉ์€ ํƒ„์†Œ ์ €์žฅ ํšจ์œจ์ด ๋‚ฎ์€ ์ด์šฉ ํ˜•ํƒœ๋ฅผ ๊ฐ–๊ณ  ์žˆ์—ˆ๋‹ค. ๋‘˜์งธ, Tier 2์™€ Tier 3 ์ˆ˜์ค€์— ๋”ฐ๋ฅธ ์ˆ˜ํ™•๋œ ๋ชฉ์ œํ’ˆ ํƒ„์†Œ ์ถ•์ ๋Ÿ‰ ๊ณ„์ • ๊ฒฐ๊ณผ์— ํฐ ์ฐจ์ด๊ฐ€ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ตญ์ œ ์ˆ˜์ค€์ธ Tier 2 ๋ฐฉ๋ฒ•์œผ๋กœ ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ์ˆ˜ํ™•๋œ ๋ชฉ์ œํ’ˆ์— ์ €์žฅ๋œ ํƒ„์†Œ๋ฅผ ๊ณ„์ •ํ•  ๊ฒฝ์šฐ Tier 3 ์ˆ˜์ค€๊ณผ ๋น„๊ตํ•˜์—ฌ ๊ณผ๋Œ€ ์ถ”์ •๋˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์…‹์งธ, ๋ชฉ์žฌ์ด์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ณ„ ์˜จ์‹ค๊ฐ€์Šค ๊ฐ์ถ• ์ž ์žฌ๋Ÿ‰์ด ๊ฐ€์žฅ ๋†’์€ ์‹œ๋‚˜๋ฆฌ์˜ค๋Š” ํ˜„ํ–‰ ์ •์ฑ… ๊ณ„ํš์ธ ์›๋ชฉ๊ณผ ์ œ์žฌ๋ชฉ์˜ ์ƒ์‚ฐ ์ฆ๊ฐ€์™€ ๋™์‹œ์— ์žฅ์ˆ˜๋ช…์œผ๋กœ ์ œ์žฌ๋ชฉ์„ ์ด์šฉํ•˜๋Š” ๋ชฉ์žฌ ์ด์šฉ ํŒจํ„ด์„ ๊ฐ€์ ธ๊ฐˆ ์ˆ˜ ์žˆ๋„๋ก ํ•˜์—ฌ ์–‘์ ์ธ ์ฆ๊ฐ€๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ํƒ„์†Œ ์ €์žฅ ํšจ์œจ์„ ๋†’์ธ ์‹œ๋‚˜๋ฆฌ์˜ค๋กœ ์šฐ๋ฆฌ๋‚˜๋ผ ์˜จ์‹ค๊ฐ€์Šค ๊ฐ์ถ•์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋Š” ์ž ์žฌ๋Ÿ‰์ด ํฐ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋„ท์งธ, ์šฐ๋ฆฌ๋‚˜๋ผ ์ œ์žฌ ์ƒ์‚ฐ์˜ ํšจ์œจ์„ฑ์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ ๊ตญ์‚ฐ ์›๋ชฉ์„ ๊ฐ€๊ณตํ•˜๋Š” ์ œ์žฌ์†Œ๋Š” ์ˆ˜์ž… ์›๋ชฉ์„ ๊ฐ€๊ณตํ•˜๋Š” ์ œ์žฌ์†Œ์— ๋น„ํ•˜์—ฌ ์ƒํƒœ์  ํšจ์œจ์„ฑ์ด ๋‚ฎ์€ ๊ฒฝํ–ฅ์ด ์žˆ์—ˆ๋‹ค. ์ด๋Š” ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ๋ชฉ์žฌ ์ด์šฉ ๊ตฌ์กฐ๊ฐ€ ๊ตญ์‚ฐ ์ œ์žฌ๋ชฉ์€ ๋ฐ˜๊ฐ๊ธฐ๊ฐ€ ์งง์€ ํ† ๋ชฉ์šฉ์žฌ๋กœ ์ด์šฉ๋˜๊ณ  ์žˆ๋Š”๋ฐ ๋ฐ˜ํ•˜์—ฌ ์ˆ˜์ž… ์›๋ชฉ์„ ๊ฐ€๊ณตํ•œ ์ œ์žฌ๋ชฉ์€ ๋ฐ˜๊ฐ๊ธฐ๊ฐ€ ๊ธด ๊ฑด์ถ•์ด๋‚˜ ๊ฐ€๊ตฌ๋กœ ์ด์šฉ๋˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ํ™œ์—ฝ์ˆ˜ ์›๋ชฉ์œผ๋กœ ์ƒ์‚ฐํ•œ ์ œ์žฌ๋ชฉ์€ ๊ฒฝ์ œ์  ๋ถ€๊ฐ€๊ฐ€์น˜๊ฐ€ ๋†’์œผ๋‚˜ ๋Œ€๋ถ€๋ถ„ ์ˆ˜์ž… ํ™œ์—ฝ์ˆ˜ ์›๋ชฉ์„ ์ด์šฉํ•˜์—ฌ ์ƒ์‚ฐ๋˜๊ณ  ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋Š”๋ฐ ์ด๋Š” ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ๊ฒฝ์ œ๋ชฉ์ด ์ฃผ๋กœ ์นจ์—ฝ์ˆ˜๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๊ณ  ํ™œ์—ฝ์ˆ˜๋Š” ์ œ์žฌ๋ชฉ์œผ๋กœ ์ด์šฉ๋  ์ˆ˜ ์žˆ๊ธฐ์—๋Š” ๊ฒฝ๊ธ‰์ด ๋‚ฎ์€ ์ˆ˜์ค€์— ๋จธ๋ฌผ๋Ÿฌ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋ชฉ์žฌ์˜ ๊ธฐํ›„์กฐ์ ˆ ๊ธฐ๋Šฅ์ธ ํƒ„์†Œ ๊ฐ€์น˜๋ฅผ ์ธก์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์ง€์‹์ฒด๊ณ„๋ฅผ ํ•™๋ฌธ์ ์œผ๋กœ ๋ฐœ์ „์‹œํ‚ค๊ณ  ์ง€์†๊ฐ€๋Šฅํ•œ ์ž์› ์ด์šฉ์„ ์œ„ํ•ด ๋‹ฌ์„ฑํ•ด์•ผ ํ•  ํšจ์œจ์„ฑ ๊ด€์ ์—์„œ ๋ชฉ์žฌ ์ด์šฉ์„ ํ‰๊ฐ€ํ•จ์œผ๋กœ์จ ์šฐ๋ฆฌ ์‚ฌํšŒ๊ฐ€ ์ƒํƒœ์  ๊ฑด์ „์„ฑ์„ ๋‹ด๋ณดํ•˜๋Š” ์‚ฌํšŒ๋กœ ๋‚˜์•„๊ฐ€๊ณ  ๊ธฐํ›„๋ณ€ํ™” ๋Œ€์‘์„ ์ˆ˜๋ฆฝํ•  ์ˆ˜ ์žˆ๋Š” ์ •์ฑ… ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š”๋ฐ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋‹ค.๋ชฉ์ฐจ i ํ‘œ๋ชฉ์ฐจ iv ๊ทธ๋ฆผ๋ชฉ์ฐจ vi 1. ์„œ๋ก  1 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ 1 1.2 ์ฃผ์š” ์šฉ์–ด 2 1.3 ์—ฐ๊ตฌ ๋ฌธ์ œ 2 1.4 ์—ฐ๊ตฌ ๋ชฉ์  3 2. ์ด๋ก ์  ๋ฐฐ๊ฒฝ 5 2.1 ์ง€์†๊ฐ€๋Šฅํ•œ ์†Œ๋น„์™€ ์ƒ์‚ฐ 5 2.1.2 ์ง€์†๊ฐ€๋Šฅํ•œ ์†Œ๋น„์™€ ์ƒ์‚ฐ 5 2.1.2 ์ƒํƒœ์  ๊ทผ๋Œ€ํ™” 6 2.2 ์ƒํƒœํšจ์œจ์„ฑ๊ณผ ์ง€์†๊ฐ€๋Šฅํ•œ ๋ฐœ์ „ ๋ชฉํ‘œ 8 2.2.1 ์ž์› ํšจ์œจ์„ฑ 8 2.2.2 ์ƒํƒœํšจ์œจ์„ฑ ๊ฐœ๋… 9 2.2.3 ํƒ„์†Œ ์ €์žฅ ํšจ์œจ์„ฑ 9 2.3 ๋ชฉ์žฌ ์ž์›์˜ ์ƒํƒœํšจ์œจ์„ฑ๊ณผ ์ง€์†๊ฐ€๋Šฅํ•œ ๋ฐœ์ „ 10 2.3.1 ์ƒํƒœ๊ณ„์„œ๋น„์Šค 10 2.3.2 ๋ชฉ์žฌ ์ž์›์˜ ์ƒํƒœ๊ณ„์„œ๋น„์Šค ์ƒ์ถฉ๊ด€๊ณ„ 12 2.3.3 ์ˆœ์ฐจ์  ๋ชฉ์žฌ ์ด์šฉ 14 2.4 ์ˆ˜ํ™•๋œ ๋ชฉ์ œํ’ˆ์˜ ์˜จ์‹ค๊ฐ€์Šค ์ €์žฅ ํšจ๊ณผ 16 2.4.1 ์ˆ˜ํ™•๋œ ๋ชฉ์ œํ’ˆ์˜ ๊ธฐํ›„๋ณ€ํ™” ์™„ํ™” ํšจ๊ณผ 16 2.4.2 ์ˆ˜ํ™•๋œ ๋ชฉ์ œํ’ˆ์˜ ์˜จ์‹ค๊ฐ€์Šค ์ €์žฅ ํšจ๊ณผ 16 2.5 ์ˆ˜ํ™•๋œ ๋ชฉ์ œํ’ˆ ํƒ„์†Œ๊ณ„์ •์— ๋Œ€ํ•œ ์„ ํ–‰ ์—ฐ๊ตฌ 18 2.5.1 ์ˆ˜ํ™•๋œ ๋ชฉ์ œํ’ˆ ํƒ„์†Œ ์ €์žฅํšจ๊ณผ์— ๋Œ€ํ•œ ์ •์ฑ…์  ๊ด€์‹ฌ 18 2.5.2 ์ˆ˜ํ™•๋œ ๋ชฉ์ œํ’ˆ ํƒ„์†Œ๊ณ„์ •์— ๋Œ€ํ•œ ์—ฐ๊ตฌ์‚ฌ 21 3. ์—ฐ๊ตฌ ์„ค๊ณ„ 29 3.1 ์—ฐ๊ตฌ ์งˆ๋ฌธ 29 3.2 ์—ฐ๊ตฌ ๋ฒ”์œ„ 32 4. ์ˆ˜ํ™•๋œ ๋ชฉ์ œํ’ˆ์— ๋Œ€ํ•œ ์ •์ฑ… ํ˜„ํ™ฉ 33 4.1 ์‚ฐ๋ฆผ ํƒ„์†Œ ๊ด€๋ฆฌ ์ •์ฑ… 33 4.1.1 ํ† ์ง€์ด์šฉ 33 4.1.2 ์‚ฐ๋ฆผ ํƒ„์†Œ ํก์ˆ˜ ํ˜„ํ™ฉ 36 4.1.3. ์‚ฐ๋ฆผ ํƒ„์†Œ ๊ด€๋ฆฌ ๋ฐ ์ฆ๊ฐ€ ์ •์ฑ… 41 4.2 ๋ชฉ์žฌ ์‚ฐ์—… ์ •์ฑ… 43 4.2.1 ๋ชฉ์žฌ ์ƒ์‚ฐ ์ •์ฑ… 43 4.2.2 ๋ชฉ์žฌ ์ˆ˜์š” ์ •์ฑ… 49 4.3 ๋ชฉ์žฌ ๋ถ€์‚ฐ๋ฌผ ์ด์šฉ ์ •์ฑ… 51 4.4 ํ๋ชฉ์žฌ ์žฌํ™œ์šฉ 51 5. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 56 5.1 ๊ตญ์‚ฐ ๋ชฉ์žฌ ์ž์›์˜ ์ˆœ์ฐจ์  ์ด์šฉ ๋ถ„์„ 56 5.2 ์ˆ˜ํ™•๋œ ๋ชฉ์ œํ’ˆ์˜ ํƒ„์†Œ ๊ณ„์ • 56 5.2.1 ๊ณ„์ •์˜ ๋ฒ”์œ„ ๋ฐ ๊ณ„์ • ์ˆ˜์ค€ 56 5.2.2 ๊ณ„์ •์˜ ๊ตฌ์„ฑ์š”์†Œ ๋ฐ ๊ณ„์ •์‹ 57 5.2.3 ํ™œ๋™์ž๋ฃŒ 59 5.2.4 ๋ฐ˜๊ฐ๊ธฐ 61 5.2.5 ํƒ„์†Œ ์ „ํ™˜๊ณ„์ˆ˜ 65 5.3 ์ˆ˜ํ™•๋œ ๋ชฉ์ œํ’ˆ ํƒ„์†Œ ๊ฐ์ถ• ์ž ์žฌ๋Ÿ‰ ๋ถ„์„ ์‹œ๋‚˜๋ฆฌ์˜ค 66 5.4 ์ œ์žฌ๋ชฉ ์ƒ์‚ฐ์˜ ํšจ์œจ์„ฑ ๋ถ„์„ 76 5.4.1 ํšจ์œจ์„ฑ ๋ถ„์„ ๋ชจํ˜• 76 5.4.2 ์ž๋ฃŒ 78 5.4.3 ๋ถ„์„ ๋„๊ตฌ 80 6. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ 83 6.1 ๊ตญ์‚ฐ ๋ชฉ์žฌ ์ž์›์˜ ์ˆœ์ฐจ์  ์ด์šฉ ํ˜„ํ™ฉ 83 6.2 ์ˆ˜ํ™•๋œ ๋ชฉ์ œํ’ˆ ํƒ„์†Œ ๊ณ„์ • ๋ฐฉ๋ฒ•๋ก  ๋น„๊ต 88 6.3 ๋ชฉ์žฌ์ด์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ณ„ ์˜จ์‹ค๊ฐ€์Šค ๊ฐ์ถ• ์ž ์žฌ๋Ÿ‰ 92 6.4 ์ œ์žฌ๋ชฉ ์ƒ์‚ฐ์˜ ํšจ์œจ์„ฑ ๋ถ„์„ 96 6.4.1 ์‚ฐ์ง€๋ณ„ยท์ˆ˜์ข…๋ณ„ ์›๋ชฉ ์ด์šฉ ํ˜„ํ™ฉ 96 6.4.2 ์ƒ์‚ฐ ๋ฐ ์ƒํƒœ์  ํšจ์œจ์„ฑ ๊ธฐ์ˆ ํ†ต๊ณ„ 100 6.4.2 ์›๋ชฉ ์‚ฐ์ง€ ๋ฐ ์ˆ˜์ข…์— ๋”ฐ๋ฅธ ํšจ์œจ์„ฑ ์ฐจ์ด ๋ถ„์„ 101 6.5 ์—ฐ๊ตฌ ๊ณ ์ฐฐ 104 7. ๊ฒฐ๋ก  108 8. ์ฐธ๊ณ ๋ฌธํ—Œ 111Docto

    ๋น„ํœ˜๋ฐœ์„ฑ ๋ฉ”๋ชจ๋ฆฌ ์ ์šฉ์„ ์œ„ํ•œ ์‹œ๋ƒ…์Šค ์†Œ์ž ์ œ์ž‘๊ณผ 3D NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    MasterAs the demand for semiconductor memory increases, there is growing interest in research on the next-generation nonvolatile memory and efforts to resolve critical issues in memory devices. In this thesis, we fabricate artificial synaptic devices that operate by the charge/discharge of ions and simulate the mechanical stress and electrical characteristics analysis of 3D NAND flash memory using TCAD. In Chapter 1, we introduce the operation principles and research trends of neuromorphic devices and NAND flash memory. We also briefly introduce the process flow of the commercial TCAD simulator. In Chapter 2, we report three-terminal synaptic devices that emulate the human brain using SnS2-reduced graphene oxides (rGO) and ion-doped polyethylene oxide (PEO) for neuromorphic applications. SnS2-rGO can reversibly uptake and release Na+ ions by electrochemical reactions. When voltage is applied to the gate, the conductance change of the channel is induced by ion migration from the electrolyte to the channel. The devices can emulate essential synaptic functions including EPSC, PPF, spatiotemporal signal processing, transition from short-term to long-term plasticity, and STDP. The linear and symmetric potentiation /depression characteristics required for neuromorphic devices were also obtained. Therefore, we demonstrate the feasibility of neuromorphic memory using electro-chemical devices with the movement of sodium ions. In Chapter 3, we report the relationship between mechanical stress and electrical characteristics in 3D NAND flash memory and how to improve device reliability. The 3D NAND structure is modeled using the TCAD tool. The residual stress of the channel and on-current are analyzed according to the deposition temperature of the poly-Si channel, tunneling oxide and tungsten WL. The high tensile stress of the channel increased the on-current of the device. The memory characteristics such as program and erase operations, and memory window variations are confirmed. Then, we suggest the optimal deposition conditions to solve the issue of reliability deterioration with increasing the number of stacked layers of 3D NAND

    ๊ตญ์‚ฐ๋ชฉ์ œํ’ˆ ์ด์šฉ์˜ ํƒ„์†Œ์ €์žฅ ๋ฐ ๋Œ€์ฒดํšจ๊ณผ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฐ๋ฆผ๊ณผํ•™๋ถ€(์‚ฐ๋ฆผํ™˜๊ฒฝํ•™์ „๊ณต), 2012. 2. ์œค์—ฌ์ฐฝ.๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธฐํ›„๋ณ€ํ™”์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•œ ์šฐ๋ฆฌ๋‚˜๋ผ ๋ชฉ์žฌ์ž์›์˜ ํšจ์œจ์ ์ธ ์ด์šฉ๋ฐฉ์•ˆ์„ ๋„์ถœํ•˜๊ธฐ ์œ„ํ•ด ๋ชฉ์žฌ์ œํ’ˆ์ด ๊ฐ–๋Š” ํƒ„์†Œ๊ณ ์ • ๋ฐ ํ™”์„์—ฐ๋ฃŒ ๋Œ€์ฒดํšจ๊ณผ๋ฅผ ๊ณ„๋Ÿ‰ํ™”ํ•˜๊ณ  ๋ชฉ์ œํ’ˆ์„ ์–ด๋–ป๊ฒŒ ์ด์šฉํ•˜๋Š” ๊ฒƒ์ด ๊ธฐํ›„๋ณ€ํ™” ์™„ํ™”ํšจ๊ณผ๋ฅผ ๊ทน๋Œ€ํ™”ํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€์— ๋Œ€ํ•˜์—ฌ ํƒ์ƒ‰ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์šฐ๋ฆฌ๋‚˜๋ผ ๊ตญ์‚ฐ ๋ชฉ์žฌ์ž์›์˜ ํƒ„์†Œ์ €์žฅ๋Ÿ‰์˜ ๋ณ€ํ™”๋ฅผ ๋ถ„์„ํ•˜์˜€์œผ๋ฉฐ, ๋„คํŠธ์›Œํฌ ๋ถ„์„์„ ํ†ตํ•˜์—ฌ ๋ชฉ์žฌ์ œํ’ˆ์— ๋‚ด์žฌ๋˜์–ด ์žˆ๋Š” ํƒ„์†Œ๊ณ ์ •๋Ÿ‰์ด ์ด์šฉ ๊ฒฝ๋กœ์— ๋”ฐ๋ผ ์–ด๋–ป๊ฒŒ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ๋Š”๊ฐ€๋ฅผ ์‚ดํŽด๋ณด์•˜๋‹ค. 2009๋…„๋„๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๊ตญ์‚ฐ ์›๋ชฉ์€ ๋ชฉ์žฌ์นฉ, ๋ชฉ์งˆ๋ณด๋“œ, ์ œ์žฌ๋ชฉ ์ƒ์‚ฐ์„ ์œ„ํ•ด ๊ฐ๊ฐ 39%, 33%, 17%๊ฐ€ ํˆฌ์ž…๋˜์—ˆ๋‹ค. ๋ชฉ์งˆ๋ณด๋“œ์˜ ์›์ž์žฌ๋Š” ํ๋ชฉ์žฌ์™€ ์›๋ชฉ์ด ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š”๋ฐ, ์›๋ชฉ์„ ์ด์šฉํ•˜๋Š” ๋น„์ค‘์ด 61.7% ์˜€๋‹ค. ๋ฒŒ์ฑ„ ๋ฐ ์ˆฒ๊ฐ€๊พธ๊ธฐ ์‚ฌ์—…์„ ํ†ตํ•˜์—ฌ ๋ฐœ์ƒํ•œ ์ž„์ง€์ž”์žฌ์˜ 72%๊ฐ€ ์ž„์ง€์— ์ž์—ฐ๋ฐฉ์น˜๋˜๊ณ  ์žˆ๊ณ , ๋‚˜๋จธ์ง€ 28%๋Š” ๋ณด๋“œ์šฉ์žฌ, ๋†์—…์šฉ์žฌ, ํ™”๋ชฉ, ํ†ฑ๋ฐฅ์ œ์กฐ์šฉ์œผ๋กœ ๊ฐ๊ฐ 54%, 29%, 9%, 8%๊ฐ€ ํˆฌ์ž…๋˜์—ˆ๋‹ค. 2009๋…„๋„ ๊ธฐ์ค€์œผ๋กœ ๊ตญ์‚ฐ๋ชฉ์žฌ๋Š” ์ œ์กฐ๋‹จ๊ณ„์—์„œ ๊ฐ€์ •์šฉ ๋ชฉ์žฌ>ํŽ„ํ”„>๋†์—…์šฉ ๋ชฉ์ œํ’ˆ>๊ฑด์ถ•์šฉ์žฌ>ํ™”๋ชฉ>๊ธฐํƒ€>ํ† ๋ชฉ์šฉ์žฌ>ํฌ์žฅ์šฉ์žฌ ์ˆœ์œผ๋กœ ํˆฌ์ž…๋˜์—ˆ๊ณ , ๊ฐ€์ •์šฉ์žฌ์™€ ํŽ„ํ”„์šฉ์žฌ, ๋†์—…์šฉ์žฌ, ๊ฑด์ถ•์šฉ์žฌ๊ฐ€ ์ฐจ์ง€ํ•˜๋Š” ๋น„์œจ์ด ๊ฐ๊ฐ 35%, 22%, 20%, 16%๋กœ, ์ „์ฒด์˜ 93%์— ํ•ด๋‹นํ•˜์˜€๋‹ค. ์ด์šฉ๋‹จ๊ณ„์˜ ๋ˆ„์ ๋œ ๋ชฉ์žฌ์ถ•์ ๋Ÿ‰์€ 2009๋…„๋„ ํ˜„์žฌ ๊ฑด์ถ•์šฉ์žฌ, ๊ฐ€์ •์šฉํ’ˆ, ๋†์—…์šฉ์žฌ, ํŽ„ํ”„, ํฌ์žฅ์šฉ์žฌ, ํ† ๋ชฉ์šฉ์žฌ๋กœ์„œ ๊ฐ๊ฐ 4,104์ฒœm3, 3,995์ฒœm3, 826์ฒœm3, 529์ฒœm3, 90์ฒœm3, 84์ฒœm3 ๊ฐ€ ์ถ•์ ๋ผ์žˆ์œผ๋ฉฐ, ์—ดํšŒ์ˆ˜๋กœ ์ด์šฉ๋œ ๋ชฉ์žฌ๋Ÿ‰์€ 527์ฒœm3์ด๋‹ค. ๋ชฉ์žฌ๋Š” ์ œ์žฌ๋ชฉ์—์„œ ๋ชฉ์งˆ๋ณด๋“œ์šฉ์œผ๋กœ ์žฌํ™œ์šฉ ๋  ์ˆ˜ ์žˆ์ง€๋งŒ ๋ฐ˜๋Œ€๋ฐฉํ–ฅ์œผ๋กœ ์ด์šฉ๋  ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์— ๋„คํŠธ์›Œํฌ๋ถ„์„์„ ํ†ตํ•˜์—ฌ ํƒ„์†Œ์ €์žฅํšจ๊ณผ์™€ ์ด์‚ฐํ™”ํƒ„์†Œ ๋ฐฉ์ถœ ๋Œ€์ฒดํšจ๊ณผ๋ฅผ ์ตœ๋Œ€ํ™” ํ•˜๋Š” ์ตœ์ ์ด์šฉ๊ฒฝ๋กœ๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ๊ธฐํ›„๋ณ€ํ™” ๋Œ€์‘์ •์ฑ…์—์„œ ์ˆœํ™˜์  ์ž์›์ด์šฉ์„ ๋งŒ์กฑํ•˜๋Š” ๊ตญ์‚ฐ๋ชฉ์žฌ์˜ ๋ถ„๋ฐฐ์ˆœ์„œ๊ฐ€ ์›๋ชฉโ†’์ œ์žฌ๋ชฉโ†’๊ฑด์ถ•โ†’์žฌํ™œ์šฉ์˜ ์ˆœํ™˜์  ์ด์šฉ๊ฒฝ๋กœ๋กœ ๋ฐํ˜€์กŒ๋‹ค. ์ด์™€ ํ•จ๊ป˜ ํ๊ธฐ๋‹จ๊ณ„์—์„œ ์žฌํ™œ์šฉ ํšŸ์ˆ˜๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ชฉ์ œํ’ˆ ์ œ์กฐ๋‹จ๊ณ„์—์„œ ํ๋ชฉ์žฌ ๋“ฑ๊ธ‰์ €ํ•˜ ์›์ธ์ด ๋˜๋Š” ํ™”ํ•™๋ฌผ์งˆ์ด ํฌํ•จ๋˜์ง€ ์•Š๋„๋ก ํ•˜๋Š”, ์ฆ‰ ๊ฑด์ถ•๋‚ด์žฅ์žฌ์™€ ๊ฐ€์ •์šฉํ’ˆ์— ์œ ํ•ดํ™”ํ•™๋ฌผ์งˆ์„ ํฌํ•จํ•˜์ง€ ์•Š๋Š” ์นœํ™˜๊ฒฝ ๋ชฉ์ œํ’ˆ์„ ์ด์šฉํ•˜๋Š” ๊ฒฝ์šฐ ๋ชฉ์ œํ’ˆ์˜ ์ด์‚ฐํ™”ํƒ„์†Œ ๋ฐฉ์ถœ์ €๊ฐํšจ๊ณผ๊ฐ€ ์ƒ๋‹นํžˆ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” ์‚ฐ๋ฆผ์—์„œ ๋ฐ”์ด์˜ค์—๋„ˆ์ง€ ๊ณต๊ธ‰์„ ํ™•๋Œ€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋ฐ”์ด์˜ค ์ˆœํ™˜๋ฆผ ๋“ฑ์„ ์กฐ์„ฑํ•˜์—ฌ, ์›๋ชฉ์ƒ์‚ฐ๊ณผ ๊ฑด์ถ•์šฉ์žฌ๋กœ์˜ ์ œ์žฌ๊ณต์ •์„ ๊ฑฐ์น˜์ง€ ์•Š๊ณ  ๊ณง๋ฐ”๋กœ ์ „๊ธฐ์ƒ์‚ฐ์˜ ์›๋ฃŒ๋กœ ์ด์šฉํ•˜๋Š” ๋“ฑ์˜ ์ž„์‚ฐ์—๋„ˆ์ง€ ์ƒ์‚ฐ์„ ํ™•๋Œ€ํ•˜๋Š” ์‚ฐ๋ฆผ์ •์ฑ…์€ ๊ธฐํ›„๋ณ€ํ™” ์™„ํ™”ํšจ๊ณผ ์ธก๋ฉด์—์„œ ์ตœ์„ ์ด ์•„๋‹˜์„ ์‹œ์‚ฌํ•œ๋‹ค. ๊ตญ์‚ฐ๋ชฉ์žฌ ์ด์šฉ์„ ํ†ตํ•˜์—ฌ ๊ธฐํ›„๋ณ€ํ™” ์™„ํ™”ํšจ๊ณผ๋ฅผ ๊ทน๋Œ€ํ™”ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ํ˜„์žฌ์˜ ํ๋ฆ„์—์„œ ์ˆœํ™˜์  ๋ชฉ์žฌ์ž์›์ด์šฉ์ด ๊ทน๋Œ€ํ™”๋˜๋Š” ๊ฒฝ๋กœ๋กœ ๋ชฉ์žฌ๊ฐ€ ํ˜๋Ÿฌ๊ฐ€๋„๋ก ์ธ์„ผํ‹ฐ๋ธŒ๋ฅผ ์ œ๊ณตํ•จ์œผ๋กœ์จ, ์ˆœํ™˜์  ์ž์›์ด์šฉ์„ ์œ„ํ•œ ์ž์›๋ถ„๋ฐฐ๋ฅผ ์ด‰์ง„ํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค. ์œ ํ•ด ํ™”ํ•™๋ฌผ์งˆ์ธ ํฌ๋ฆ„์•Œ๋ฐ์ด๋“œ๊ฐ€ ์—†๋Š” ์นœํ™˜๊ฒฝ ๋ชฉ์žฌ์ด์šฉ ๋ฐ ๊ฐ€๊ณต ํ™œ๋™์ด ํƒ„์†Œ์ €์žฅํšจ๊ณผ ๋ฐ ๋Œ€์ฒดํšจ๊ณผ๋ฅผ ์ฆ๋Œ€ํ•˜๋Š” ์žฌํ™œ์šฉ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์นœํ™˜๊ฒฝ ๋ชฉ์ œํ’ˆ์˜ ์ด์šฉ ๋ฐ ๊ฐ€๊ณต ํ™œ๋™์— ๋Œ€ํ•˜์—ฌ ํฌ๋ ˆ๋”ง์„ ์ œ๊ณตํ•จ์œผ๋กœ์จ ์ˆœํ™˜์  ์ž์›์ด์šฉ์„ ์œ ๋„ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ํ˜„์žฌ์˜ ๋ชฉ์žฌ ์ด์šฉ๊ฒฝ๋กœ๋ฅผ ์ˆœํ™˜์  ์ด์šฉ๊ฒฝ๋กœ๋กœ ์œ ๋„ํ•˜๊ธฐ ์œ„ํ•œ ๊ตญ๋‚ด ๋ชฉ์žฌ ์ด์šฉ์ •์ฑ…์œผ๋กœ, ์ฒซ์งธ, ๊ธฐ์กด์— ๋ชฉ์žฌ์นฉยทํŽ„ํ”„์šฉ์žฌ๋กœ ํˆฌ์ž…๋˜๋Š” ๋ฆฌ๊ธฐ๋‹ค์†Œ๋‚˜๋ฌด์™€ ํ™œ์—ฝ์žก๋ชฉ ์ค‘ ๋Œ€๊ฒฝ์žฌ๋ฅผ ์ œ์žฌ๋ชฉ์œผ๋กœ ํˆฌ์ž…๋˜๋„๋ก ์œ ๋„ํ•˜๋Š” ์œ ์ธ์ฑ…์ด ํ•„์š”ํ•˜๋‹ค. ์ด๋ฅผ ์œ„ํ•˜์—ฌ ๋ฒŒ์ฑ„ํ•œ ์›๋ชฉ์„ ์‚ฐ์ง€์—์„œ ์ œ์žฌ์†Œ๋กœ ์ฃผ๋กœ ๊ณต๊ธ‰ํ•˜๋Š” ๋ชฉ์ƒ์„ ๋Œ€์ƒ์œผ๋กœ ๋ชฉ์žฌ์นฉยทํŽ„ํ”„์šฉ์žฌ ์ค‘ ๋Œ€๊ฒฝ์žฌ๋ฅผ ์ œ์žฌ๋ชฉ์œผ๋กœ ๊ณต๊ธ‰ํ•˜๋„๋ก ์œ ๋„ํ•˜๊ณ , ์ด๋Ÿฌํ•œ ๋ชฉ์žฌ์ž์›์„ ์ด์šฉํ•˜์—ฌ ์ƒ์‚ฐํ•œ ์ œ์žฌ์†Œ์—๋Š” ๊ธฐํ›„๋ณ€ํ™” ์™„ํ™”ํšจ๊ณผ์— ๋Œ€ํ•œ ๊ฒฝ์ œ์  ๋ณด์ƒ์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์„ ์ œ์•ˆํ•œ๋‹ค. ๋‘˜์งธ, ํ๋ชฉ์žฌ ์žฌํ™œ์šฉ์ด ์ถ”๊ฐ€์ ์ธ ํƒ„์†Œ์ €์žฅํšจ๊ณผ๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค๊ธฐ ๋•Œ๋ฌธ์— ์žฌํ™œ์šฉ ๋ชฉ์ œํ’ˆ์˜ ํƒ„์†Œ์ €์žฅํšจ๊ณผ๋ฅผ ๊ณ„์ •ํ•  ๋•Œ ์›๋ชฉ์„ ์ด์šฉํ•œ ๋ชฉ์ œํ’ˆ๋ณด๋‹ค ํƒ„์†Œ๋ฐฐ์ถœ๊ถŒ์„ ๋” ๋งŽ์ด ๋ถ€์—ฌํ•˜๋Š” ๋“ฑ์˜ ๊ฒฝ์ œ์  ๋ณด์ƒ์ด ํ•„์š”ํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์ •์ฑ…์ด ์‹คํ˜„๋˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ชฉ์žฌ์ด์šฉ ๊ฐ ๋‹จ๊ณ„๋ณ„ ๋ชฉ์žฌ์ด์šฉ ์‹คํƒœ๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ์ •๋ณด์‹œ์Šคํ…œ์˜ ๊ตฌ์ถ•๊ณผ ๊ฐ ๋ชฉ์ œํ’ˆ ์ด์šฉ์ž์˜ ํƒ„์†Œ๊ณ„์ •์„ ์‚ฐ์ •ํ•  ์ˆ˜ ์žˆ๋Š” ํ”„๋กœ๊ทธ๋žจ์˜ ๊ฐœ๋ฐœ์ด ์š”๊ตฌ๋œ๋‹ค.The purpose of this study is to evaluate the alternative ways of using domestic wood resources in responding to climate change. It estimates the carbon storage effect and substitution effect of carbon dioxide emissions of alternative ways of utilizing domestic wood resources for mitigating climate change. This study examines how carbon stored in wooden products can vary depending on their usage path by using network analysis. In 2009, 39%, 33%, and 17% of domestic woods were used to produce wood chip, wood-based board, and sawn wood, respectively. Round wood and wood waste were used as raw material for producing wood board, of which the 61.7% of raw materials was supplied in the form of mills. 72% of residuals from felling and tree improvement activities such as pruning and thinning remained in the forest as waste and the rest of 28% was delivered to wood-based board manufacturing, agriculture, fire wood and sawdust making respectively at 54%, 29%, 9%, 8% in 2009. In 2009, domestic wood was supplied mainly for manufacturing household goods, pulp, agriculture and building and their shares are 35%, 22%, 20%, and 16% respectively. As of 2009, the quantity of wooden products accumulated in buildings, household goods, agri-material, packing, construction is estimated to 4,104thousand m3, 3,995thousand m3, 826thousand m3, 90thousand m3, 84thousand m3 , respectively. The quantity of wood in the form of forest residuals, building waste wood and black liquor from pulping process, used for energy recovery is 527thousand m3. Wood resources can be recycled from sawn wood-based to wood board, but the opposite direction is not possible. Therefore, an optimal wood utilization path which maximizes the carbon storage effect and substitution effect of carbon dioxide emission was drawn through network analysis. As a result, a distribution order satisfying a cyclical use of wood resources in responding to policy of climate change is the cyclical utilization path of round woodโ†’sawn woodโ†’buildingsโ†’recycling. There is another way of increasing the frequency of recycling. Avoiding inclusion of toxic chemicals in the manufacturing stage can augment the carbon storage effect and substitution effect of carbon dioxide emission considerably by substituting building materials and household goods with eco-interior materials and products. The result of this study implies that the afforestation policy that promotes establishment of forests for supply of bioenergy and the forest biomass to be used for generation of electricity without the sawing process is not the optimal way from a climate change mitigation perspective. To maximize the effect of mitigating climate change of using domestic wood utilization, it is necessary to provide proper incentives in order to shift from the existing path to sustainable path. The use and manufacture of eco-friendly products can increase the carbon storage effect and substitution effect of carbon dioxide emission. Therefore, a sustainable use of wood resources can be induced by offering carbon credit to activities of the use and manufacture of eco-friendly products. In order to induce the current path of domestic wood usage into a cyclic path, the following policies are proposed: Firstly, there is a need to formulate a policy that induces the use of large-diameter log as sawlog so as for wood chips and pulp to be produced as byproducts, instead of directly using logs of pitch pine and hardwood timber as pulp wood. For this, a timber dealer who harvest timber from forests should be given incentives to deliver large-diameter hard wood log as sawlogs to a mill not directly to pulp mills. Also, a mill that utilizes such wood resources can be given economic compensation as it contributed to mitigating climate change. Secondly, because waste wood recylcing increases additional carbon storage effect, there is a need to provide economic incentive such as granting more carbon credit to recycled products compared to the products made of raw materials harvested from forests. In order to realize this policy, there is a need to establish data systems that keep records wood usage for each process and to develop program that can demonstrate an carbon account of each user of wood product. Keyword: Harvested Wood Products, Material Flow Analysis, Domestic Wood, Mitigation of Carbon Dioxide Emission, Korean Wood Industry , Climate Change PolicyMaste

    Carbon Storage and GHG Substitution Effect of Domestic Wood Products

    No full text
    ์ตœ๊ทผ ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ํ™˜๊ฒฝ์  ์˜ํ–ฅ์ด ํ˜„์‹ค๋กœ ๋‚˜ํƒ€๋‚˜๋ฉด์„œ ์ง€๊ตฌ์˜จ๋‚œํ™”์™€ ๊ฐ™์€ ํ™˜๊ฒฝ๋ฌธ์ œ๋Š” ์ธ๋ฅ˜์˜ ์ƒ ์กด์„ ์œ„ํ•ด ๋‹ค ๊ฐ™์ด ํ•ด๊ฒฐํ•ด ๋‚˜๊ฐ€์•ผ ํ•˜๋Š” ๋ฌธ์ œ๋กœ ์ธ์‹๋˜๊ณ  ์žˆ๋‹ค. ํ˜„์žฌ์™€ ๊ฐ™์ด ํ™”์„์—ฐ๋ฃŒ์— ์˜์กดํ•œ ๋Œ€๋Ÿ‰ ์†Œ๋น„ํ˜•์˜ ์‚ฌํšŒ๊ฐ€ ์ง€์†๋  ๊ฒฝ์šฐ ๊ธˆ์„ธ๊ธฐ ๋ง๊นŒ์ง€ ์ง€๊ตฌ ํ‰๊ท ๊ธฐ์˜จ ์€ ์ตœ๋Œ€ 6.4โ„ƒ ์ƒ์Šนํ•˜๊ณ , ํ•ด์ˆ˜๋ฉด์€ 59cm ์ƒ์Šนํ•  ๊ฒƒ์œผ๋กœ ์ „๋งํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ™˜๊ฒฝ์นœํ™”์ ์œผ๋กœ ์œ  ์ง€๋  ๊ฒฝ์šฐ ๊ธฐ์˜จ์€ ์ตœ์†Œ 1.1โ„ƒ, ํ•ด์ˆ˜๋ฉด์€ 18cm ์ƒ์Šนํ•  ๊ฒƒ์œผ๋กœ ์ „๋งํ•˜์˜€๋‹ค. ๊ฒฝ์ œ์„ฑ์žฅ๊ณผ ํ™˜๊ฒฝ์ด ๊ท ํ˜• ์ ์œผ๋กœ ๋ฐœ์ „ํ•  ๊ฒฝ์šฐ ์ง€๊ตฌ ํ‰๊ท  ๊ธฐ์˜จ์€ 2.8โ„ƒ, ํ•ด์ˆ˜๋ฉด์€ 21~48cm ์ƒ์Šนํ•  ๊ฒƒ์œผ๋กœ ์ „๋ง๋œ๋‹ค(IPCC, 2007). 1992๋…„ ๋ฆฌ์šฐํ™˜๊ฒฝ์ •์ƒํšŒ์˜์—์„œ์ง€์†๊ฐ€๋Šฅํ•œ ๋ฐœ์ „(Sustainable Development)์ด ์ƒˆ๋กœ์šด ๋ฐœ์ „ ๋ฐฉํ–ฅ์œผ ๋กœ ์ฑ„ํƒ๋œ ์ดํ›„ 2002๋…„ 9์›” ๋‚จ์•„๊ณต์˜ ์š”ํ•˜๋„ค์Šค๋ฒ„๊ทธ์—์„œ ์—ด๋ฆฐ ์ง€์†๊ฐ€๋Šฅํ•œ ๋ฐœ์ „์„ ์œ„ํ•œ ์„ธ๊ณ„์ •์ƒํšŒ์˜ (WSSD: World Summit on Sustainable Development)์—์„œ๋Š” ์ง€์†๊ฐ€๋Šฅํ•œ ๋ฐœ์ „๋ฌธ์ œ๋ฅผ ์„ธ๊ณ„ ๊ฐ ๊ตญ์˜ ์ฃผ์š” ํ˜„์•ˆ์œผ๋กœ ์ œ์‹œํ•˜์˜€๋‹ค. ์ด์— ๊ฐ ๊ตญ๊ฐ€ ์ •๋ถ€์—์„œ๋Š” ์ง€์†๊ฐ€๋Šฅํ•œ ๋ฐœ์ „์„ ์œ„ํ•œ ๊ฒฝ์ œ์„ฑ์žฅ, ํ™˜๊ฒฝ๋ณดํ˜ธ, ์‚ฌํšŒ๋ฐœ์ „์˜ 3๊ฐ€์ง€ ์ถ•์„ ํ†ตํ•ฉ์ ์œผ๋กœ ์•„์šฐ๋ฅด๋Š” ์ •์ฑ…๋Œ€์•ˆ ๊ฐœ๋ฐœ์„ ์œ„ํ•œ ์ƒ๋‹นํ•œ ๋…ธ๋ ฅ์„ ๊ธฐ์šธ์ด๊ณ  ์žˆ๋˜ ๊ฐ€์šด๋ฐ, ์ด๋Ÿฌํ•œ ๋…ธ๋ ฅ์˜ ์ผํ™˜์œผ๋กœ ์ž์›์˜ ์ˆœํ™˜์ด์šฉ์„ ์ด‰์ง„ํ•˜๋Š” ์ •์ฑ…๋ถ„์„์˜ ์ˆ˜๋‹จ์œผ๋กœ ๋ฌผ์งˆํ๋ฆ„๋ถ„์„ ๋ฐฉ ๋ฒ•์ด ์ œ์‹œ๋˜์—ˆ๋‹ค. 2004๋…„ 4์›” OECD ์ด์‚ฌํšŒ๋Š” ๋ฌผ์งˆํ๋ฆ„ ๋ฐ ์ž์›์ƒ์‚ฐ์„ฑ์— ๊ด€ํ•œ ๊ทœ์ •์„ ์ฑ„ํƒํ•˜์˜€๋‹ค. ์ด ๊ทœ์ •์—์„œ๋Š” ์ž์›์ˆœํ™˜์ •์ฑ…์— ๋ฌผ์งˆํ๋ฆ„๋ถ„์„์„ ์ด์šฉํ•˜๊ณ  ๋ฐœ์ „์‹œํ‚ค๋Š” ๋‚ด์šฉ์„ ๋‹ด๊ณ  ์žˆ๋‹ค
    corecore