72 research outputs found

    Skull Factors Affecting Outcomes of Magnetic Resonance-Guided Focused Ultrasound for Patients With Essential Tremor

    Get PDF
    Purpose: Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy has become a standard treatment for medically intractable essential tremor (ET). Skull density ratio (SDR) and skull volume in patients with ET are currently considered useful indicators of the successful application of MRgFUS. We compared the clinical outcomes of MRgFUS thalamotomy with SDR above 0.4 and 0.45. We also described patterns of SDR and skull volume in Korean patients with ET who were eligible to be screened for MRgFUS. Materials and methods: In screening 318 ET patients, we evaluated patterns of skull density and skull volume according to age and sex. Fifty patients with ET were treated with MRgFUS. We investigated the effects of SDR and skull volume on treatment parameters and the outcomes of ET. Results: The mean SDR of the 318 ET patients was 0.45Β±0.11, and that for skull volume was 315.74Β±40.95 cmΒ³. The male patients had a higher SDR than female patients (p=0.047). Skull volume significantly decreased with aging. SDR and skull volume exhibited a linear negative relationship. Among therapeutic parameters, maximal temperature was positively related to SDR, while sonication number was not related to either SDR or skull volume. Tremor outcome was also not related to SDR or skull volume. Conclusion: SDR varied widely from 0.11 to 0.73, and men had a higher SDR. Therapeutic parameters and clinical outcomes were not affected by SDR or skull volume.ope

    Percutaneous Procedures for Trigeminal Neuralgia

    Get PDF
    Microvascular decompression is the gold standard for the treatment of trigeminal neuralgia (TN). However, percutaneous techniques still play a role in treating patients with TN and offer several important advantages and efficiency in obtaining immediate pain relief, which is also durable in a less invasive and safe manner. Patients' preference for a less invasive method can influence the procedure they will undergo. Neurovascular conflict is not always a prerequisite for patients with TN. In addition, recurrence and failure of the previous procedure can influence the decision to follow the treatment. Therefore, indications for percutaneous procedures for TN persist when patients experience idiopathic and episodic sharp shooting pain. In this review, we provide an overview of percutaneous procedures for TN and its outcome and complication.ope

    Characteristics of Focused Ultrasound Mediated Blood-Brain Barrier Opening in Magnetic Resonance Images

    Get PDF
    Objective : The blood-brain barrier (BBB) is an obstacle for molecules to pass through from blood to the brain. Focused ultrasound is a new method which temporarily opens the BBB, which makes pharmaceutical delivery or removal of neurodegenerative proteins possible. This study was demonstrated to review our BBB opening procedure with magnetic resonance guided images and find specific patterns in the BBB opening. Methods : In this study, we reviewed the procedures and results of two clinical studies on BBB opening using focused ultrasound regarding its safety and clinical efficacy. Magnetic resonance images were also reviewed to discover any specific findings. Results : Two clinical trials showed clinical benefits. All clinical trials demonstrated safe BBB opening, with no specific side effects. Magnetic resonance imaging showed temporary T1 contrast enhancement in the sonication area, verifying the BBB opening. Several low-signal intensity spots were observed in the T2 susceptibility-weighted angiography images, which were also reversible and temporary. Although these spots can be considered as microbleeding, evidence suggests these are not ordinary microbleeding but an indicator for adequate BBB opening. Conclusion : Magnetic resonance images proved safe and efficient BBB opening in humans, using focused ultrasound.ope

    Complications After Deep Brain Stimulation: A 21-Year Experience in 426 Patients

    Get PDF
    Background: Deep brain stimulation is an established treatment for movement disorders such as Parkinson's disease, essential tremor, and dystonia. However, various complications that occur after deep brain stimulation are a major concern for patients and neurosurgeons. Objective: This study aimed to analyze various complications that occur after deep brain stimulation. Methods: We reviewed the medical records of patients with a movement disorder who underwent bilateral deep brain stimulation between 2000 and 2020. Among them, patients requiring revision surgery were analyzed. Results: A total of 426 patients underwent bilateral deep brain stimulation for a movement disorder. The primary disease was Parkinson's disease in 315 patients, followed by dystonia in 71 patients and essential tremor in 40 patients. Twenty-six (6.1%) patients had complications requiring revision surgery; the most common complication was infection (12 patients, 2.8%). Conclusion: Various complications may occur after deep brain stimulation, and patient prognosis should be improved by reducing complications.ope

    Dual Pallidal and Thalamic Deep Brain Stimulation for Complex Ipsilateral Dystonia

    Get PDF
    Purpose: Globus pallidus pars interna (GPi) has become an established target for deep brain stimulation (DBS) in dystonia. Previous studies suggest that targeting the ventralis oralis (Vo) complex nucleus improves dystonic tremor or even focal dystonia. Research has also demonstrated that multi-target DBS shows some benefits over single target DBS. In this study, we reviewed patients who had undergone unilateral DBS targeting the GPi and Vo. Materials and methods: Five patients diagnosed with medically refractory upper extremity dystonia (focal or segmental) underwent DBS. Two DBS electrodes each were inserted unilaterally targeting the ipsilateral GPi and Vo. Clinical outcomes were evaluated using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and Disability Rating Scale. Results: BFMDRS scores decreased by 55% at 1-month, 56% at 3-month, 59% at 6-month, and 64% at 12-month follow up. Disability Rating Scale scores decreased 41% at 1-month, 47% at 3-month, 50% at 6-month, and 60% at 12-month follow up. At 1 month after surgery, stimulating both targets improved clinical scores better than targeting GPi or Vo alone. Conclusion: Unilateral thalamic and pallidal dual electrode DBS may be as effective or even superior to DBS of a single target for dystonia. Although the number of patients was small, our results reflected favorable clinical outcomes.ope

    Stimulation-Induced Side Effects of Deep Brain Stimulation in the Ventralis Intermedius and Posterior Subthalamic Area for Essential Tremor

    Get PDF
    Deep brain stimulation (DBS) targeting the ventralis intermedius (VIM) nucleus of the thalamus and the posterior subthalamic area (PSA) has been shown to be an effective treatment for essential tremor (ET). The aim of this study was to compare the stimulation-induced side effects of DBS targeting the VIM and PSA using a single electrode. Patients with medication-refractory ET who underwent DBS electrode implantation between July 2011 and October 2020 using a surgical technique that simultaneously targets the VIM and PSA with a single electrode were enrolled in this study. A total of 93 patients with ET who had 115 implanted DBS electrodes (71 unilateral and 22 bilateral) were enrolled. The Clinical Rating Scale for Tremor (CRST) subscores improved from 20.0 preoperatively to 4.3 (78.5% reduction) at 6 months, 6.3 (68.5% reduction) at 1 year, and 6.5 (67.5% reduction) at 2 years postoperation. The best clinical effect was achieved in the PSA at significantly lower stimulation amplitudes. Gait disturbance and clumsiness in the leg was found in 13 patients (14.0%) upon stimulation of the PSA and in significantly few patients upon stimulation of the VIM (p = 0.0002). Fourteen patients (15.1%) experienced dysarthria when the VIM was stimulated; this number was significantly more than that with PSA stimulation (p = 0.0233). Transient paresthesia occurred in 13 patients (14.0%) after PSA stimulation and in six patients (6.5%) after VIM stimulation. Gait disturbance and dysarthria were significantly more prevalent in patients undergoing bilateral DBS than in those undergoing unilateral DBS (p = 0.00112 and p = 0.0011, respectively). Paresthesia resolved either after reducing the amplitude or switching to bipolar stimulation. However, to control gait disturbance and dysarthria, some loss of optimal tremor control was necessary at that particular electrode contact. In the present study, the most common stimulation-induced side effect associated with VIM DBS was dysarthria, while that associated with PSA DBS was gait disturbance. Significantly, more side effects were associated with bilateral DBS than with unilateral DBS. Therefore, changing active DBS contacts to simultaneous targeting of the VIM and PSA may be especially helpful for ameliorating stimulation-induced side effects.ope

    Predictive Factors of Radiation-Induced Changes Following Single-Session Gamma Knife Radiosurgery for Arteriovenous Malformations

    Get PDF
    We evaluated for possible predictors of radiation-induced changes (RICs) after gamma knife radiosurgery (GKRS) for arteriovenous malformations (AVMs). We identified the nidal component within AVMs to analyze the correlation between the volume of brain parenchyma within the 50% isodose line (IDL) and RICs. We retrospectively reviewed patients with AVMs who underwent a single-session of GKRS at our institution between 2007 and 2017 with at least a 2-year minimum follow-up. Follow-up magnetic resonance images were evaluated for newly developed T2 signal changes and the proportions of nidus and intervening parenchyma were quantified. A total of 180 AVM patients (98 males and 82 females) with a median age of 34 years were included in the present study. The overall obliteration rate was 67.8%. The median target volume was 3.65 cc. The median nidus and parenchyma volumes within the 50% IDL were 1.54 cc and 2.41 cc, respectively. RICs were identified in 79 of the 180 patients (43.9%). AVMs associated with previous hemorrhages showed a significant inverse correlation with RICs. In a multivariate analysis, RICs were associated with a higher proportion of brain parenchyma within the 50% IDL (hazard ratio (HR) 169.033; p < 0.001) and inversely correlated with the proportion of nidus volume within the 50% IDL (HR 0.006; p < 0.001). Our study identified that a greater proportion of brain tissue between the nidus within the 50% IDL was significantly correlated with RICs. Nidus angioarchitectural complexity and the absence of a prior hemorrhage were also associated with RICs. The identification of possible predictors of RICs could facilitate radiosurgical planning and treatment decisions as well as the planning of appropriate follow-up after GKRS; this could minimize the risk of RICs, which would be particularly beneficial for the treatment of incidentally found asymptomatic AVMs.ope

    Pseudoprogression and peritumoral edema due to intratumoral necrosis after Gamma knife radiosurgery for meningioma

    Get PDF
    Peritumoral cerebral edema is reported to be a side effect that can occur after stereotactic radiosurgery. We aimed to determine whether intratumoral necrosis (ITN) is a risk factor for peritumoral edema (PTE) when gamma knife radiosurgery (GKRS) is performed in patients with meningioma. In addition, we propose the concept of pseudoprogression: a temporary volume expansion that can occur after GKRS in the natural course of meningioma with ITN. This retrospective study included 127 patients who underwent GKRS for convexity meningioma between January 2019 and December 2020. Risk factors for PTE and ITN were investigated using logistic regression analysis. Analysis of variance was used to determine whether changes in tumor volume were statistically significant. After GKRS, ITN was observed in 34 (26.8%) patients, and PTE was observed in 10 (7.9%) patients. When postoperative ITN occurred after GKRS, the incidence of postoperative PTE was 18.970-fold (p = 0.009) greater. When a 70% dose volume β‰₯ 1 cc was used, the possibility of ITN was 5.892-fold (p < 0.001) higher. On average, meningiomas with ITN increased in volume by 128.5% at 6 months after GKRS and then decreased to 94.6% at 12 months. When performing GKRS in meningioma, a 70% dose volume β‰₯ 1 cc is a risk factor for ITN. At 6 months after GKRS, meningiomas with ITN may experience a transient volume expansion and PTE, which are characteristics of pseudoprogression. These characteristics typically improve at 12 months following GKRS.ope

    Safety and Efficacy of Magnetic Resonance-Guided Focused Ultrasound Surgery With Autofocusing Echo Imaging

    Get PDF
    Objective: Magnetic resonance-guided focused ultrasound surgery (MRgFUS) lesioning is a new treatment for brain disorders. However, the skull is a major barrier of ultrasound sonication in MRgFUS because it has an irregular surface and varies its size and shape among individuals. We recently developed the concept of skull density ratio (SDR) to select candidates for MRgFUS from among patients with essential tremor (ET). However, SDR is not the only factor contributing to successful MRgFUS lesioning treatment-refining the target through exact measurement of the ultrasonic echo in the transducer also improves treatment efficacy. In the present study, we carried out MRgFUS lesioning using an autofocusing echo imaging technique. We aimed to evaluate the safety and efficacy of this new approach, especially in patients with low SDR in whom previous focusing methods have failed. Methods: From December 2019 to March 2020, we recruited 10 patients with ET or Parkinson's disease (PD) who had a low SDR. Two patients dropped out of the trial due to the screening failure of other medical diseases. In total, eight patients were included: six with ET who underwent MRgFUS thalamotomy and two with PD who underwent MRgFUS pallidotomy. The autofocusing echo imaging technique was used in all cases. Results: The mean SDR of the patients with ET was 0.34 (range: 0.29-0.39), while that of the patients with PD was 0.41 (range: 0.38-0.44). The mean skull volume of patients with ET was 280.57 cm3 (range: 227-319 cm3), while that of the patients with PD was 287.13 cm3 (range: 271-303 cm3). During MRgFUS, a mean of 15 sonications were performed, among which a mean of 5.63 used the autofocusing technique. The mean maximal temperature (Tmax) achieved was 55.88Β°C (range: 52-59Β°C), while the mean energy delivered was 34.75 kJ (range: 20-42 kJ) among all patients. No serious adverse events occurred during or after treatment. Tmax or sonication factors (skull volume, SDR, sonication number, autofocusing score, similarity score, energy range, and power) were not correlated with autofocusing technique (p > 0.05, autofocusing score showed a p-value of 0.071). Conclusion: Using autofocusing echo imaging lesioning, a safe and efficient MRgFUS treatment, is available even for patients with a low SDR. Therefore, the indications for MRgFUS lesioning could be expanded to include patients with ET who have an SDR < 0.4 and those with PD who have an SDR < 0.45. Clinical trial registration: clinicaltrials.gov, identifier: NCT03935581.ope

    EU Law & Local Autonomy in Germany

    No full text
    • …
    corecore