7 research outputs found
ํ๊ตญ ๊ทผ๋ ์ํํธ์ฃผํ์ ํ ํ์ฐ๊ณผ์ ์ ๊ดํ ์ฐ๊ตฌ : 1970๋ ๋ ์์ธํน๋ณ์๋ฅผ ์ค์ฌ์ผ๋ก
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธๅคงๅญธๆ ก ๅคงๅญธ้ข :ๅๆจๅทฅๅญธ็ง ้ฝๅธๅทฅๅญธๅฐๆป,1997.Maste
๊ฒฝ์ ์ฑ์ฅ์์์ ์ง์์๋ณธ์ ์ญํ : ์ฐ์ ๋ณใ๊ตญ๊ฐ ๋ฐ์ ๋จ๊ณ๋ณ ๋ถ์
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ๋๊ฒฝ์ ์ฌํํ๋ถ, 2017. 2. ์ ์งํ.์ง์์๋ณธ์ ์ถ์ ์ ํตํด ๊ธฐ์
์ ์๋ก์ด ์ ํ ๋ฐ ์๋น์ค๋ฅผ ์์ฐํ์ฌ ์๋ก์ด ์์๋ฅผ ์ฐฝ์ถํ๊ณ , ๊ตญ๊ฐ๋ ์๋ก์ด ๊ฒฝ์ ๊ตฌ์กฐ๋ฅผ ํ๋ฆฝํ์ฌ ๊ฒฝ์ ์ฑ์ฅ์ ๋๋ชจํ๋ค. ํนํ ์ง์์๋ณธ์ ์ญํ ์ ์ต๊ทผ ๊ฐ ๊ตญ์ ๊ฒฝ์ ์ฑ์ฅ์ ์ค์ํ ์์ธ์ผ๋ก ๋ถ๊ฐ๋๊ณ ์๋๋ฐ, ์ด๋ IT๊ธฐ์ ์ ๋ฐ๋ฌ๊ณผ 4์ฐจ ์ฐ์
ํ๋ช
์ผ๋ก ์ธํ ์ตยท๋ณตํฉ ์ฐ์
์ ๋ฑ์ฅ์ ๊ธฐ์ธํ๋ค.
์ง์์๋ณธ์ ๋ค์ํ ๊ด์ ์์ ์ ์๋ ์ ์์ผ๋, ๊ธฐ์กด ์ฐ๊ตฌ์์ ์ฃผ๋ก ์ฌ์ฉ๋์๋ ๊ฒ์ผ๋ก๋ ๊ณผํ๊ธฐ์ ์ฐ๊ตฌ์ฑ๊ณผ, R&Dํฌ์, ํนํ์ถ์ ๋ฑ์ด ์๋ค. ์ด๋ฌํ ๋ณ์๋ค์ ์ง์์๋ณธ์ ํน์ฑ๊ณผ ๋ฐ์ ํ ์ฐ๊ด์ด ์๋๋ฐ, R&Dํฌ์๋ ์ง์์๋ณธ์ฐฝ์ถ์ ์์ด ํฌ์
์์์ด๋ฉฐ ๊ณผํ๊ธฐ์ ์ฐ๊ตฌ์ฑ๊ณผ์ ํนํ์ถ์์ ์ง์์๋ณธ์ถ์ ์ ๊ฒฐ๊ณผ์ด๋ค. ์ฆ ๊ณผํ๊ธฐ์ ์ฐ๊ตฌ์ฑ๊ณผ, R&Dํฌ์, ํนํ๋ฅผ ๋์์ ๋ถ์ํจ์ผ๋ก์จ ์ง์์๋ณธ์ ๊ฐ ๋จ๊ณ๋ฅผ ์ด์ฒด์ ์ผ๋ก ํ์
ํ ์ ์๋ค. ์ด์ ๋ณธ ์ฐ๊ตฌ์์๋ ์ง์์๋ณธ์ด๋ผ ํจ์ ๊ณผํ๊ธฐ์ ์ฐ๊ตฌ์ฑ๊ณผ, R&Dํฌ์, ํนํ๋ฅผ ์๋ฏธํ๋ค.
์ด๋ฌํ ์ธก๋ฉด์์ ๊ธฐ์กด์ฐ๊ตฌ๋ ๋ค์๊ณผ ๊ฐ์ ํ๊ณ์ ์ ๊ฐ๋๋ค. ์ฒซ์งธ, ๊ธฐ์กด ์ฐ๊ตฌ๋ ์ง์์๋ณธ๊ฐ๋
๊ณผ ๋ณ๊ฐ๋ก ๊ฐ ๋ณ์๋ฅผ ๋จ์ํ ๊ฒฝ์ ์ฑ์ฅ ์์ธ์ผ๋ก๋ง ํ์
ํ๊ณ ์ ํ์๋ค. ์๋ฅผ ๋ค์ด R&Dํฌ์๋ง์ ๊ฒฝ์ ์ฑ์ฅ ํน์ ๊ธฐ์
์ฑ๊ณผ์ ๋ฏธ์น๋ ์ํฅ๋ง์ ํ์
ํ๊ณ ์ ํ์๋ค. ๋ํ ์ง์์๋ณธ์ถ์ ์ ๋น์ฉ๊ตฌ์กฐ๋ฅผ ๊ฐ์ ํ๊ธฐ ๋๋ฌธ์ ๊ฐ ๊ตญ๊ฐ์ ์ฌํ๊ฐ์ ์๋ณธ์ ์ฑ๊ฒฉ์ ๊ฐ๋๋ค. ๊ทธ๋ฌ๋ ์ด๋ฅผ ๋ฐ์ํ์ฌ ๋ถ์์ ์ค์ํ ์ฐ๊ตฌ๋ ์ฐพ๊ธฐ ํ๋ค๋ค. ๋์งธ, ๊ตญ๊ฐ์์ค ์๋ฃ์ ๋ถ์กฑ์ผ๋ก ์ธํด ๋๋ค์์ ์ฐ๊ตฌ๊ฐ ์ง์์๋ณธ์ ์ญํ ์ ๊ธฐ์
์ฑ๊ณผ์๋ง ํ์ ์ง์๋ค. ๊ทธ๋ฌ๋ 2000๋
์ดํ ๊ตญ์ ๊ธฐ๊ตฌ๋ฅผ ํตํด ๊ตญ๊ฐ์์ค์์๋ ์ง์์๋ณธ์๋ฃ๊ฐ ์ถ์ ๋์ด ์๋ค. ๋ฐ๋ผ์ ๊ตญ๊ฐ์์ค์ ์ง์์๋ณธ ์๋ฃ๊ฐ ์ถฉ๋ถํ ๋์ ๋ ํ์ฌ์, ๊ฒฝ์ ์ฑ์ฅ์ ๋ํ ์ง์์๋ณธ์ ์ญํ ์ ๊น์ด ์๊ฒ ๋
ผ์ํ ํ์๊ฐ ์๋ค.
์ด์ ๋ณธ ๋
ผ๋ฌธ์ ์ง์์๋ณธ์ ์ด์ฒด์ ์ญํ ์ ๊ท๋ช
ํ๊ธฐ ์ํด ๊ณผํ๊ธฐ์ ์ฐ๊ตฌ์ฑ๊ณผ(๋
ผ๋ฌธ), R&D์ง์ถ์ก, ํนํ์ถ์์ ๋์ผํ ๊ฒฝ์ ์ฑ์ฅ๋ชจํ์์ ๋
๋ฆฝ๋ณ์๋ก ์ค์ ํ์๋ค. ๋ํ ์ง์์๋ณธ์ ๊ฐ ๊ตญ์ ์ฌํ๊ฐ์ ์๋ณธ์ผ๋ก ์ ์ํ๊ณ ์ ํ์๋ค. ์ด๋ฅผ ์ํด ์ฌํ๊ฐ์ ์๋ณธ๊ณผ ๊ฒฝ์ ์ฑ์ฅ ๊ฐ์ ๊ด๊ณ๋ฅผ ๊ท๋ช
ํ ์ด๋ก ์ ๋ฐฐ๊ฒฝ์ ์ง์์๋ณธ์ ์ ์ฉํ์์ผ๋ฉฐ, ๊ฐ ์ง์์๋ณธ์ ๊ณผ๊ฑฐ 3๋
๊ฐ ์ถ์ ๋ ์คํก๋ณ์๋ก ์ค์ ํ์๋ค. ์ถ๊ฐ์ ์ผ๋ก ์ฐ์
๋ณ๊ณผ ๊ตญ๊ฐ ๋ฐ์ ๋จ๊ณ๋ณ๋ก ์ง์์๋ณธ์ ์ญํ ์ ๋ถ์ํ์๋ค. ์ด๋ฅผ ์ํด ์ ์กฐ์
, ์๋น์ค์
, ๋์
์ผ๋ก ์ฐ์
์ ๋ถ๋ฅํ์์ผ๋ฉฐ, ์ ์๊ฐ๋ฐ๊ณํ(UNDP)์ ์ธ๊ฐ๊ฐ๋ฐ์ง์(HDI)์ ๊ตญ๊ฐ๋ถ๋ฅ์ ๋ฐ๋ผ ์ ์ง๊ตญ, ๊ฐ๋ฐ๋์๊ตญ, ์ ๊ฐ๋ฐ๊ตญ์ผ๋ก ๋๋์ด ์ง์์๋ณธ์ ์ญํ ์ ๋ถ์ํ์๋ค. ์ด๋ฌํ ๋ถ์์ ์ํํ๊ธฐ ์ํ์ฌ ๋ค์ํ ๊ตญ์ ๊ธฐ๊ตฌ์ ์๋ฃ๋ฅผ ํ์ฉํ์ฌ ์ ์ธ๊ณ 120๊ฐ๊ตญ์ ๋์์ผ๋ก 2000๋
๋ถํฐ 2014๋
๊น์ง์ ํจ๋์๋ฃ๋ฅผ ๊ตฌ์ถํ์๋ค.
๋ถ์๋ชจํ๊ณผ ์ค๋ช
๋ณ์๋ก๋ Leamer(1983)์ ํ๊ณ๋ฒ์๋ถ์(Extreme Bound Analysis: EBA)์ ์ ์ฉํ Levine and Renelt(2002)์ ์ฅ๊ธฐ๊ฒฝ์ ์ฑ์ฅ๋ชจํ์ ํ์ฉํ์์ผ๋, ๋ถ์๋ฐฉ๋ฒ์ ์์ด์๋ ํ๊ท ๊ฒฝ์ ์ฑ์ฅ๋ฅ ์ ์ถ์ ํ ๊ณผ๊ฑฐ์ฐ๊ตฌ๋ค์ ๋ฐ๋ฅด์ง ์๊ณ ํจ๋๋ถ์์ ์ค์ํ์๋ค. ํจ๋๋ถ์์ ๊ฒฐ๊ณผ๋ Hausman ๊ฒ์ ๊ฒฐ๊ณผ๋ฅผ ๋ฐํ์ผ๋ก ๊ณ ์ ํจ๊ณผ๋ชจํ(fixed effect model) ๋ฐ ์์ํจ๊ณผ๋ชจํ(random effect model)์ผ๋ก ๋ํ๋๋ค.
์ฐ๊ตฌ๊ฒฐ๊ณผ๋ฅผ ์์ฝํ๋ฉด ๋ค์๊ณผ ๊ฐ๋ค. ์ฒซ์งธ, ๋ชจ๋ ์ง์์๋ณธ์คํก์ ๊ฒฝ์ ์ฑ์ฅ์ ์ด์งํ์๋ค. ์ด๋ ์ง์์๋ณธ์ด ๊ฐ ๊ตญ์ ๊ฒฝ์ ์ฑ์ฅ์ ์ฌํ๊ฐ์ ์๋ณธ์ผ๋ก์์ ์ญํ ์ ์ํํ๊ณ ์๋ค๋ ์ฆ๊ฑฐ๋ผ๊ณ ํ ์ ์๋ค. ๋์งธ, ์ง์์๋ณธ์ ๋ชจ๋ ์ฐ์
๋ถ๋ฌธ์ ์ฑ์ฅ์ ์ด์งํ๋ ์ญํ ๋ ์ํํ๊ณ ์๋ค. ์ด๋ ์ง์์๋ณธ์ด ํน์ ์ฐ์
์๋ง ํนํ๋์ด ๊ฒฝ์ ์ฑ์ฅ์ ์ด๋๋ ๊ฒ์ด ์๋๋ผ, ํ๊ธํจ๊ณผ(spill-over effect)๋ฅผ ํตํด ๋ชจ๋ ์ฐ์
์ ์ง์ ์ ๋๋ ๊ฐ์ ์ ์ผ๋ก ์ํฅ์ ๋ฏธ์น๊ณ ์๋ค๋ ๊ฒ์ ์์ฌํ๋ค. ๋ง์ง๋ง์ผ๋ก ๊ตญ๊ฐ ๋ฐ์ ๋จ๊ณ๋ณ๋ก ๋ถ์ํ๋๋ผ๋ ์ง์์๋ณธ์ ์ถ์ ์ ๋ชจ๋ ๊ตญ๊ฐ ๋ฐ์ ๋จ๊ณ์์ ๊ฒฝ์ ์ฑ์ฅ๊ณผ ๋ฐ์ ํ ์ฐ๊ด์ฑ์ ๊ฐ๋๋ค.
์ด๋ฌํ ๋ถ์๊ฒฐ๊ณผ๋ ์ง์์๋ณธ์ถ์ ์ ๋ํ ๊ฐ ๊ตญ์ ์ง์์๋ณธ์ ์ฑ
์ ์ค์ํ ์์ฌ์ ์ ์ ๊ณตํ๋ค. ๋ถ์๊ฒฐ๊ณผ์ ๋ฐ๋ฅด๋ฉด ์ง์์๋ณธ์ ๋ํ ํฌ์๋ ๊ตญ๊ฐ ๊ฒฝ์ ์ฑ์ฅ์ ๋งค์ฐ ์ค์ํ๋ค. ๋ํ ์ง์์๋ณธ์ ์ฐ์
๊ฐ ํ๊ธํจ๊ณผ๊ฐ ์กด์ฌํ๋ฉฐ, ์ ์ง๊ตญ๊ณผ ๊ฐ๋ฐ๋์๊ตญ ๊ทธ๋ฆฌ๊ณ ์ ๊ฐ๋ฐ๊ตญ ๋ชจ๋์ ๊ฒฝ์ ์ฑ์ฅ์ ์ด์งํ๋ค. ๋ฐ๋ผ์ ๊ฐ๋ฐ๋์๊ตญ์ด๋ ์ ๊ฐ๋ฐ๊ตญ์ ๊ฒฝ์ฐ ์ด๊ธฐ์ ์ง์์๋ณธ์ ํ๊ณํจ๊ณผ๊ฐ ๋งค์ฐ ํฌ๋ฏ๋ก ์ง์์๋ณธ์ ๋ํ ํฌ์๋ฅผ ๊ตญ๊ฐ์ฑ์ฅ์ ์ฑ
์ ์ฐ์ ์์๋ก ์ค์ ํ ํ์๊ฐ ์๋ค. ๋ํ ์ ์ง๊ตญ ์ญ์ ์ง์์๋ณธ์ ์ฐ์
๊ฐ ํ๊ธํจ๊ณผ๋ฅผ ๊ณ ๋ คํ์ฌ ์ง์์๋ณธ์ ํ๊ณํจ๊ณผ๊ฐ ์๋๋ผ๋ ์ง์์๋ณธ์ ์ถ์ ์ ์ถฉ๋ถํ ์ํํ ํ์๊ฐ ์๋ค.Through the accumulation of intellectual capital, enterprises produce new products and services to create new demand, and countries establishes new economic structures to promote economic growth. In particular, the role of intellectual capital has recently been highlighted as an important factor in economic growth. This is due to the development of information technology and the emergence of fusion and hybrid industries led by the fourth industrial revolution.
Although intellectual capital can be defined in various ways, the variables that have been mainly used in previous studies include research in science and technology, R&D investment, and patents. These variables are closely related to the characteristics of intellectual capital. For instance, R&D investment is an input factor for intellectual capital accumulation, and research in science and technology, and patent applications are the result of intellectual capital accumulation. In other words, each stage of intellectual capital can be grasped as a whole by analyzing research in science and technology, R&D investments, and patents simultaneously. In this paper, the intellectual capital is defined as research in science and technology, R & D investments, and patents.
In this respect, existing studies have the following limitations. First, previous studies addressed each variable as factors of economic growth separately, which is inconsistent with the intellectual capital theory. In other words, previous studies sought to identify the effect of a single variable such as R&D investment on economic growth or firm performance. In addition, since it improves cost structure of the country, intellectual capital accumulation can also be characterized as a social overhead capital. However, previous studies failed to perform analysis in this perspective. Second, due to the lack of national level data, the majority of studies limited the role of intellectual capital to the effects on firm performance. However, international organizations have been providing accumulated intellectual capital data at national-level since 2000. Thus, unlike in the past, as there are sufficiently accumulated national-level intellectual capital data at this point, it is necessary to discuss the role of intellectual capital in economic growth in more depth.
In order to clarify the holistic role of intellectual capital, in the current study, independent variables included research(paper) in science and technology, R&D expenditures, and patent applications in the same economic growth model. This paper also defined the intellectual capital as a social overhead capital of each country. To this end, each intellectual capital was set as the stock variables accumulated over the past three years, and the theoretical background that is used to explain the relationship between social overhead capital and economic growth was applied in this study. In addition, the current study analyzed the role of the intellectual capital by industry and country. To this end, the industries were classified as manufacturing, service, and agriculture, and the countries were classified into developed, developing, and low-developed countries according to UNDP 's national classification of human development index (HDI). For the analysis, panel data from 2000 to 2014 were constructed for 120 countries using databases from various international organizations.
The model and explanatory variables were based on the long-run economic growth model of Levine and Renelt (2002), which is based on Leamer's (1983) Extreme Bound Analysis (EBA). However, the paper conducted panel analysis, which is different from previous studies. The results of the panel analysis are presented as fixed effect model and random effect model based on Hausman test results.
The results of the study can be summarized as follows. First, every intellectual capital stock promoted economic growth. This implies that the intellectual capital plays a role as social overhead capital in the economic growth of each country. Second, the intellectual capital also plays a role in promoting growth in all industrial sectors. This suggests that the intellectual capital is not concentrated only on specific industries but directly or indirectly affects all industries through spill-over effects. Finally, even if analyzed by different country, accumulation of the intellectual capital is closely related to economic growth in all countries.
These results provide important policy implications for the accumulation of the intellectual capital. According to the analysis, investment in intellectual capital is crucial for national economic growth, and it promotes economic growth in both developed and developing countries as well as low-developed countries. In addition, as there is a spill-over effect, it initiates an inter-industry ripple effect. Thus, in the cases of developing countries and the low-developed countries, it is crucial to set the investment of intellectual capital as a priority of the national growth policy since the marginal effect of intellectual capital is very high in the early development stage. As for developed countries, it is still necessary to accumulate enough intellectual capital considering the inter-industry ripple effect, even if the marginal effect of intellectual capital is minimal.์ 1 ์ฅ ์ ๋ก 1
์ 1 ์ ์ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ํ์์ฑ 1
์ 2 ์ ์ฐ๊ตฌ์ ๋ชฉ์ ๋ฐ ๋ฐฉ๋ฒ 3
์ 3 ์ ์ ํ์ฐ๊ตฌ ๊ฒํ 6
์ 4 ์ ๋
ผ๋ฌธ์ ๊ตฌ์ฑ 10
์ 2 ์ฅ ๊ฒฝ์ ๋ฐ์ ๋ฐ ์ง์์๋ณธ ํํฉ 11
์ 1 ์ ๊ตญ๊ฐ ๋ฐ ์ฐ์
๋ณ ๋ฐ์ ํํฉ 11
์ 2 ์ ์ง์์๋ณธ ํํฉ 17
์ 3 ์ฅ ์ง์์๋ณธ๊ณผ ๊ฒฝ์ ์ฑ์ฅ 20
์ 1 ์ ์ง์์๋ณธ ์ญํ ์ ๋ํ ์ด๋ก ์ ๋
ผ์ 20
์ 2 ์ ์ง์์๋ณธ ์ญํ ์ ๋ํ ์ค์ฆ์ ๋
ผ์ 25
์ 4 ์ฅ ๋ถ์๋ชจํ๊ณผ ๋ถ์์๋ฃ 27
์ 1 ์ ๋ถ์๋ชจํ 27
์ 2 ์ ๋ถ์์๋ฃ ๋ฐ ๊ธฐ์ดํต๊ณ 30
์ 5 ์ฅ ๋ถ์๊ฒฐ๊ณผ 34
์ 1 ์ ๊ฒฝ์ ์ฑ์ฅ ๋ถ์๊ฒฐ๊ณผ 34
์ 2 ์ ์ฐ์
๋ณ ๋ถ์๊ฒฐ๊ณผ 36
์ 3 ์ ๊ตญ๊ฐ ๋ฐ์ ๋จ๊ณ๋ณ ๋ถ์๊ฒฐ๊ณผ 42
์ 6 ์ฅ ์ฐ๊ตฌ์์ฝ ๋ฐ ๊ฒฐ๋ก 47
์ฐธ๊ณ ๋ฌธํ 50
Abstract 54Maste
Technological Innovation, Economic Performance, and Employment
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ) -- ์์ธ๋ํ๊ต๋ํ์ : ๋์
์๋ช
๊ณผํ๋ํ ๋๊ฒฝ์ ์ฌํํ๋ถ(๋๊ฒฝ์ ํ์ ๊ณต), 2022. 8. ์ ์งํ.Technological innovation is one of the major strategies adopted in most industries because of its benefits in boosting economic performance. The effects of technological innovation on economic performance and labor have been receiving much attention in the manufacturing sector. However, the most recent cutting-edge digital transformation technologies, such as smart farming, drone-based farming, and unmanned tractors, have been receiving less attention in the agricultural sector despite its magnificent impact on agricultural productivity. This paper analyzed the effects of technological innovation on economic performance and employment in both manufacturing and agricultural industries.
In Chapter 3, since technological innovation is considered an endogenous variable determined by capital accumulation and labor inputs, this paper considered its endogenous characteristics by analyzing two-way causal relationships among firms technology innovation (stock of patent applications), corporate performance (sales per worker), and employment (number of workers, proportion of high-skilled workers). To this end, a three-stage least squares (3SLS) method was employed to estimate the system of equations in which the three dependent variables affected each other with a two-year time lag using firm-level panel data for Korean manufacturers with 100 or more workers over the period between 2005 and 2017. Exogenous variables, including firms managerial and other characteristics, were used in the model. Identification variables for the three equations were firms R&D intensity, investment in workers training, and labor cost per worker (or operation of firms own R&D center), respectively. The empirical results revealed that firms patent stock increased sales per worker, number of workers, and proportion of high-skilled workers and that the causal relationships in the opposite direction were also significant. This can imply that firms technological innovation is critical to employment growth and quality improvement as well as sustainable corporate growth.
In Chapter 4, the paper focused on technological innovation in the agricultural sector and estimated the causal relationships between technological innovation (agricultural patent applications), labor productivity, and the number of agricultural workers using time-series analysis. A vector autoregression (VAR) model with a five-year time lag was applied to each time-series variable for the period of 1963-2018. Drawing on Lo and Zivot (2001), a two-threshold VAR model was also estimated employing two endogenous variables: the number of agricultural patent applications and agricultural workers. The VAR(5) model revealed that there was a substitute relationship between the applications of agricultural patent and number of agricultural workers over the entire period (1963-2018). The two-threshold VAR model, however, showed that this substitution effect has been less strong and even switched to a complementary relationship over three different regimes (1963-1989, 1990-2008, 2009-2018). Given that the two different years separating the three regimes were followed by the years when structural breaks of agricultural patents happened (i.e., 1986, 2008), the weakening of labor substitution effect might be caused by the changes in the characteristics of agricultural technological innovation. This may suggest the importance of education and training systems that enable farmers to follow-up with the latest technologies and the technologies to further expand its applicability to agriculture.
In Chapter 5, I analyzed the effects of farms adoption of association rules (i.e., crop portfolio strategies) on their economic performance (crop sales) for the period of 2000-2020. Two approaches were employed in this analysis. First, I derived association rules related to farms crop choices using the Market Basket Analysis (MBA) with Census of Agriculture, Forestry and Fisheries dataset. Second, I estimated the effects of the farms adoption of the association rules on their crop sales using the Tobit model and the two-stage model in which the endogeneity problem of the adoption of association rules was controlled. In this step, I used explanatory variables including the farms adoption of the association rules, farm-specific characteristics, production characteristics, labor input, and other variables representing neighborhood effects. The main results of the analysis are as follows. First, the MBA analysis suggested that the number of association rules decreased over the two decades, while lift indices of the association rules increased, implying that crop portfolio strategies have become simpler and more reliable. Second, the Tobit model indicated that the adoption of association rules had positive effects on the farms crop sales for the years 2010-2020, but negative effects for the years 2000-2005. Third, the two-stage model, however, showed that the adoption of the association rules increased the farms crop sales significantly for the entire period 2000-2020. Moreover, the farmers education levels and the degree of information and communication technology (ICT) utilization for their farm activities were positively related to the probability of adopting the association rules. Therefore, the farmers entrepreneurship related to their crop portfolio strategies might be essential to enhancing their economic performance.
From the abovementioned results, technological innovation, that could increase the economic performance of the two industries, has been the crucial determinant for sustainable economic growth in Korea over the past few decades. This may support the importance of enhancing farmers managerial ability that enables them to absorb agricultural information and/or new agricultural technologies, thereby increasing farm performance.
Despite concerns about its labor substitution effects, this paper showed that the expansion of technological innovation led to employment growth in the Korean manufacturing sector. However, given the skill-biased characteristics of technological innovation, policy efforts would be required to respond to the possibilities of wage polarization and the unemployment of low-skilled workers. In terms of the agricultural sector, the degree of labor substitution tends to be larger than that in manufacturing because of its labor-intensive characteristics, implying that policy makers should take actions to deal with the decrease in agricultural workers by preventing rural out-migration and inducing rural in-migration. Additionally, increasing the supply of skilled agricultural workers for enhancing the complementary relationship between technological innovation and agricultural labor may be necessary.๊ฒฝ์ ์ฑ๊ณผ ์ฆ๋์ ๊ด๋ จ๋๋ ๊ธฐ์ ํ์ ์ ๋๋ถ๋ถ ์ฐ์
์์ ์ฑํ๋๋ ์ ๋ต์์๋ ๋ถ๊ตฌํ๊ณ , ๊ธฐ์ ํ์ ์ ๊ฒฝ์ ์ ์ํฅ์ ์ฃผ๋ก ์ ์กฐ์
์์ ๋ถ์๋์ด ์๋ค. ๊ทธ๋ฌ๋ ์ต๊ทผ ์ค๋งํธํ, ๋๋ก ๋๋ฒ, ๋ฌด์ธํธ๋ํฐ ๋ฑ ๋ฏธ๋ ๋์
๊ธฐ์ ์ ๋ฑ์ฅ์ ๋์
๊ธฐ์ ํ์ ์ ์ค์์ฑ์ ๋ณด์ฌ์ฃผ๊ณ ์๋ค. ์ด๋ฌํ ๋ฐฐ๊ฒฝ์์ ๋ณธ ๋
ผ๋ฌธ์ ์ ์กฐ์
๊ณผ ๋์
์ ๋์์ผ๋ก ๊ฒฝ์์ฑ๊ณผ ๋ฐ ๊ณ ์ฉ๋ณํ์ ๋ํ ๊ธฐ์ ํ์ ์ ์ํฅ์ ๋ถ์ํ์๋ค.
๊ธฐ์ ํ์ ์ ์๋ณธ์ถ์ ๊ณผ ๋
ธ๋ํฌ์
์ ์ํด ๊ฒฐ์ ๋๋ ๋ด์๋ณ์์ด๋ค. ์ด๋ฌํ ๊ธฐ์ ํ์ ์ ๋ด์์ ํน์ฑ์ ๊ณ ๋ คํ์ฌ ์ฒซ ๋ฒ์งธ ์ฐ๊ตฌ๋ ์ ์กฐ์
์ฒด์ ๊ธฐ์ ํ์ (ํนํ์ถ์), ๊ฒฝ์์ฑ๊ณผ(๊ทผ๋ก์ 1์ธ๋น ๋งค์ถ์ก), ๊ณ ์ฉ๋ณํ(๊ทผ๋ก์ ์, ์๋ จ๊ทผ๋ก์ ๋น์ค)์ ์ํธ ์ฐ๊ด๊ด๊ณ๋ฅผ ๋ถ์ํ์๋ค. ์ค์ฆ๋ถ์์๋ ๊ฐ ์ข
์๋ณ์์ ์์ฐจ๋ณ์๊ฐ ๋ค๋ฅธ ์ข
์๋ณ์์ ๋
๋ฆฝ๋ณ์๋ก ํฌํจ๋ ๊ตฌ์กฐ๋ฐฉ์ ์ ์ฒด๊ณ๋ฅผ ์ค์ ํ๊ณ , ํด๋น ๋ฐฉ์ ์ ์ฒด๊ณ๋ฅผ 3๋จ๊ณ ์ต์์์น์ถ์ ๋ฒ(3SLS)์ผ๋ก ์ถ์ ํ์๋ค. ๋ถ์์๋ฃ๋ 2005๋
โผ2017๋
์ ์ธ์ ์๋ณธ๊ธฐ์
ํจ๋(HCCP)์ด๋ค. ๋ถ์๊ฒฐ๊ณผ์ ์ํ๋ฉด ๊ธฐ์ ํ์ ๊ณผ ๊ฒฝ์์ฑ๊ณผ๋ ์ํธ ๋ณด์๊ด๊ณ์ ์๋ ๊ฒ์ผ๋ก ๋ํ๋ฌ๋ค. ๊ณ ์ฉ ์ธก๋ฉด์์ ๋ณผ ๋ ๊ธฐ์ ํ์ ์ ์ ์ฒด ๊ทผ๋ก์ ์์ ์๋ จ๊ทผ๋ก์ ๋น์ค์ ๋์๋ค. ์ฆ, ๊ธฐ์ ํ์ ์ ์๋ จํธํฅ์ ํน์ฑ์ ๊ฐ์ง๋ฉด์ ๊ณ ์ฉ๊ท๋ชจ๋ฅผ ํ๋ํ๋ค. ๋ฐ๋๋ก ๊ทผ๋ก์ ์ ๋ฐ ์๋ จ๊ทผ๋ก์ ๋น์ค์ ์ฆ๊ฐ๋ ๊ธฐ์ ํ์ ์ ์ด์งํ๋ ๊ฒ์ผ๋ก ๋ถ์๋์๋ค. ๋ถ์๊ฒฐ๊ณผ๋ฅผ ์ฐ์
๊ธฐ์ ์์ค๋ณ๋ก ๋ณด๋ฉด, ๊ธฐ์ ํ์ ์ด ๊ฒฝ์์ฑ๊ณผ์ ๋ฏธ์น๋ ์ํฅ์ ๊ธฐ์ ์ง์ฝ์ฐ์
๊ณผ ์ผ๋ฐ์ฐ์
๋ชจ๋์์ ์ ํจํ์ผ๋ฉฐ, ๊ธฐ์ ํ์ ๊ณผ ๊ณ ์ฉ์ ๊ด๊ณ๋ ์ฐ์
๊ธฐ์ ์์ค์ ์๊ด์์ด ๋์ผํ๋ค. ๋ฐ๋ผ์ ๊ธฐ์
์ ์ง์์ ์ธ ์ฑ์ฅ์ ์ํด์๋ ์ฐ์
๊ธฐ์ ์์ค์ ๊ด๊ณ์์ด ๊ธฐ์ ํ์ ๊ณผ ๊ฒฝ์์ฑ๊ณผ์ ์ ์ํ ๊ตฌ์กฐ๋ฅผ ๊ฐํํ๋ ์ ๋ต์ด ํ์ํ๋ค. ๋ํ ์ธ์ ์์ํฌ์์ ์กฐ์ ํจ๊ณผ๋ฅผ ๊ฐํํจ์ผ๋ก์จ ๊ธฐ์ ํ์ ์ ์ ๋ํ ํ์๊ฐ ์๋ค. ๋จ, ๊ธฐ์ ํ์ ์ ์๋ จํธํฅ์ฑ์ผ๋ก ์ธํ ๊ณ ์ฉ์๊ทนํ๋ ๋ณ๋์ ๋์์ด ํ์ํ๋ค.
๋ ๋ฒ์งธ ์ฐ๊ตฌ๋ ๋์
์์ ๊ธฐ์ ํ์ (๋์
ํนํ ์ถ์), ๋
ธ๋์์ฐ์ฑ, ๋์
์ทจ์
์์ ๊ด๊ณ๋ฅผ ๋ถ์ํ์๋ค. ๋ถ์๊ธฐ๊ฐ์ 1963๋
โผ2018๋
์ด๋ฉฐ, 5๋
์์ฐจ๋ฅผ ๊ฐ๋ ๋ฒกํฐ์๊ธฐํ๊ท๋ชจํ(VAR)์ ์ ์ฉํ์๋ค. ๋ํ ๊ธฐ์ ํ์ ์ ๊ตฌ์กฐ๋ณํ๋ฅผ ๊ณ ๋ คํ์ฌ ๋ ์๊ณ์น๋ฅผ ๊ฐ๋ ์๊ธฐํ๊ท๋ชจํ(threshold VAR)์ผ๋ก ๋์
ํนํ์ ๋์
์ทจ์
์์ ๊ด๊ณ๋ฅผ ์ถ์ ํ์๋ค. VAR์ถ์ ๊ฒฐ๊ณผ์ ์ํ๋ฉด, ๊ธฐ์ ํ์ ์ ๋
ธ๋์์ฐ์ฑ์ ๋์ด๋ ๋์์ ๋์
์ทจ์
์๋ฅผ ๋์ฒดํด ์จ ๊ฒ์ผ๋ก ๋ํ๋ฌ๋ค. ๋์
๊ธฐ์ ๋ณ๋ก ๋ณผ ๋, ์ํ ๋ฑ ํ ์ง๊ธฐ์ ์ ๋์
์ทจ์
์๋ฅผ ๋์ฒดํ์๊ณ ์ ํ์ข
๊ธฐ์ ์ ๋ฐ๋๋ก ๋์
์ทจ์
์๋ฅผ ์ฆ๊ฐ์์ผฐ๋ค. Threshold VAR ์ถ์ ๊ฒฐ๊ณผ๋ ์ ์ฒด ๋ถ์๊ธฐ๊ฐ์ ์ธ ๊ฐ์ ๊ธฐ๊ฐ์ผ๋ก ๊ตฌ๋ถํ์๋ค. ์ 1๊ธฐ๊ฐ(1963๋
โผ1989๋
)์์์ ๋์
ํนํ๋ ๋์
์ทจ์
์๋ฅผ ๋์ฒดํ๋ ๊ฒฝํฅ์ ๋ณด์๋ค. ๊ทธ๋ฌ๋ ์ 2๊ธฐ๊ฐ(1990๋
โผ2008๋
)์๋ ๋์
ํนํ๊ฐ ๋์
์ทจ์
์์ ๋ฏธ์น๋ ์ํฅ์ด ์ ์ํ์ง ์์์ผ๋ฉฐ, ์ 3๊ธฐ๊ฐ(2009๋
โผ2018๋
)์๋ ๋์
ํนํ๊ฐ ์คํ๋ ค ๋์
์ทจ์
์๋ฅผ ์ฆ๊ฐ์์ผฐ๋ค. ํนํ ํด๋น ๊ธฐ๊ฐ ๊ตฌ๋ถ์ ๊ฒฝ์ฐ ๋์
ํนํ์ ๊ตฌ์กฐ๋จ์ (1986๋
, 2008๋
) ์์ ์ดํ ๋ฐ์ํ ๊ฒ์ผ๋ก ๋ถ์๋์๋ค. ๋ฐ๋ผ์ ๋
ธ๋์ ๋ํ ๋์
๊ธฐ์ ํ์ ์ ์ํฅ์ ๊ธฐ์ ํ์ ์ ํน์ฑ๋ณํ์ ์์กดํ๋ ๊ฒ์ผ๋ก ํ๋จ๋๋ค.
์ธ ๋ฒ์งธ ์ฐ๊ตฌ์์๋ ๋๊ฐ ๊ธฐ์
๊ฐ์ ์ ์ด ์๋์ฑ๊ณผ์ ๋ฏธ์น๋ ์ํฅ์ ๋ถ์ํ์๋ค. ์ด ๋ ๋๊ฐ์ ์๋ฌผ์ ํ ์ ๋ต์ ๋๊ฐ ๊ธฐ์
๊ฐ์ ์ ๋ฐํ์ ๊ฒฐ๊ณผ๋ก ๋ณด์๋ค. ๋ถ์๊ธฐ๊ฐ์ 2000๋
โผ2020๋
์ด๋ฉฐ, ๏ฝข๋์
์ด์กฐ์ฌ๏ฝฃ ์๋ฌผ์๋ฃ์ ์ฅ๋ฐ๊ตฌ๋๋ถ์(MBA)์ ์ ์ฉํ์ฌ ์๋ฌผ ์ฐ๊ด๊ท์น(์๋ฌผ์ ํ ์ ๋ต)์ ๋์ถํ์๋ค. ๋ค์์ผ๋ก ๋๊ฐ ์ฐ๊ด๊ท์น ์ฑํ์ ๊ฒฝ์ ์ ์ํฅ์ ํ ๋น๋ชจํ๊ณผ 2๋จ๊ณ ๋ชจํ์ผ๋ก ๋ถ์ํ์๋ค. ๋ ๊ฒฝ์ ๋ชจํ์์ ์ข
์๋ณ์๋ ์ฌ๋ฐฐ๋ฉด์ 1ha๋น ํ๋งค๊ธ์ก์ด๋ฉฐ, ๋
๋ฆฝ๋ณ์๋ ์ฐ๊ด๊ท์น ์ฑํ, ๊ฒฝ์์ฃผํน์ฑ, ์์ฐํน์ฑ, ์ธ๋ ฅํฌ์
, ์ด์ํจ๊ณผ ๋ณ์ ๋ฑ์ ์ฌ์ฉํ์๋ค. MBA๋ถ์์ ์ํ๋ฉด, ์ต๊ทผ์ผ๋ก ์ฌ์๋ก ์ฐ๊ด๊ท์น ์๋ ๊ฐ์ํ๋ ํฅ์๋ ์งํ๋ ๋์์ง๋ ๊ฒ์ผ๋ก ๋ํ๋ ๋๊ฐ ์๋ฌผ์ ํ์ด ์ ์ฐจ ์ฒด๊ณํ๋๊ณ ์๋ ๊ฒ์ผ๋ก ๋ณด์ธ๋ค. ํ ๋น๋ชจํ ์ถ์ ๊ฒฐ๊ณผ, ์ฐ๊ด๊ท์น ์ฑํ์ 2000๋
๊ณผ 2005๋
์ ๋๊ฐ ํ๋งค๊ธ์ก์ ์(-)์ ์ํฅ์ ๋ฏธ์ณค์ผ๋, 2010๋
์ดํ ์(+)์ผ๋ก ์ ํ๋์๋ค. ๋ค๋ง 2๋จ๊ณ ๋ชจํ์์ ์ฐ๊ด๊ท์น ์ฑํ์ ๋ด์์ฑ์ ํต์ ํ ๊ฒฝ์ฐ ๋ชจ๋ ์ฐ๋์์ ์ฐ๊ด๊ท์น ์ฑํ์ ํ๋งค๊ธ์ก์ ๋์๋ค. ๋ํ ์ฐ๊ด๊ท์น ์ฑํํ๋ฅ ์ ๊ฒฝ์์ฃผ ๊ต์ก์์ค, ICTํ์ฉ, ์ด์ํจ๊ณผ์ ์ํด ์ฆ๊ฐํ์๋ค. ๋ฐ๋ผ์ ์๋ฌผ์ ํ ์ ๋ต์ ๊ธฐ์
๊ฐ์ ์ ์ ๋งค๊ฐ๋ณ์๋ก์ ์๋์ฑ๊ณผ์ ๊ธฐ์ฌํ๋ค. ๋ฐ๋ผ์ ๋์
๊ธฐ์ ํ์ ์ ํ๊ธํจ๊ณผ๋ ๋๊ฐ ๊ธฐ์
๊ฐ์ ์ ์ด ํ๋ณด๋ ๋ ๊ทน๋ํ๋ ๊ฒ์ผ๋ก ์์๋๋ค.
๊ธฐ์ ํ์ ์ ์ ์กฐ์
์์ ๊ทธ ์ค์์ฑ์ด ํฐ ๊ฒ์ด ์ฌ์ค์ด๋, ์ต๊ทผ 4์ฐจ ์ฐ์
ํ๋ช
๊ธฐ์ ์ ์คํ๋ ค ๋์
์ ์ ์ ์ ์ผ๋ก ์ ์ฉ๋๋ ๋ชจ์ต์ ๋ณด์ธ๋ค. ๋ฐ๋ผ์ ์ ์กฐ์
๊ณผ ๋์
๋ชจ๋์์ ๊ธฐ์ ํ์ ์ ๋ต์ ์ฐ๋ฆฌ๋๋ผ์ ๊ฒฝ์ ์ฑ์ฅ์ ์ค์ํ๊ฒ ์์ฉํ ๊ฒ์ผ๋ก ๋ณด์ธ๋ค.
์ ์กฐ์
์์ ๊ธฐ์ ํ์ ์ ๊ทธ๊ฐ ์ฐ๋ ค์ ๋ฌ๋ฆฌ ๊ณ ์ฉ์ ์ ๋ฐ์ ์ธ ํ๋๋ก ์ด์ด์ก๋ค. ๊ทธ๋ฌ๋ ๊ธฐ์ ํ์ ์ ์๋ จํธํฅ์ ํน์ฑ์ ์๋ จ๊ทผ๋ก์์๊ฒ ์ ๋ฆฌํ๊ฒ ์์ฉํ ๊ฒ์ผ๋ก ๋ณด์ด๋ฏ๋ก, ์ ์๋ จ๊ทผ๋ก์์ ์๊ธ๊ฐ์๋ ์ค์
๋ฑ์ ๋์ํ๋ ๋
ธ๋ ฅ์ด ์๊ตฌ๋๋ค. ๊ธฐ์ ํ์ ์ ๋
ธ๋๋์ฒด์ฑ์ ๋
ธ๋์ง์ฝ์ ์ฐ์
์ธ ๋์
์์ ํด ์ ์๋ค. ๋ฐ๋ผ์ ๋๊ฐ ์ดํ๋ฐฉ์ง ๋ฐ ์ ๊ท ๋๊ฐ ์ ์
์ ์ ์ฑ
์ง์์ ๊ฐํํ์ฌ ๋์
์ธ๋ ฅ ๊ฐ์์ ๋์ํ ํ์๊ฐ ์๋ค. ๋์
๋
ธ๋์ ์๋ จ๋๋ฅผ ๋์ฌ ์ต์ ๊ธฐ์ ํ์ ๊ณผ ๋์
๋
ธ๋์ ๋ณด์์ฑ์ ์ง์์ํค๋ ๊ฒ๋ ์ค์ํ๋ค.์ 1 ์ฅ ์ ๋ก 1
์ 1 ์ ์ฐ๊ตฌ๋ฐฐ๊ฒฝ 1
์ 2 ์ ์ฐ๊ตฌ์ ๋ชฉ์ ๋ฐ ํ์์ฑ 3
์ 3 ์ ์ฐ๊ตฌ์ ๋ด์ฉ ๋ฐ ๊ตฌ์ฑ 4
์ 2 ์ฅ ์ฐ๋ฆฌ๋๋ผ์ ๊ธฐ์ ํ์ ํํฉ 6
์ 1 ์ ๊ธฐ์ ํ์ ํฌ์
๋ฐ ์ฑ๊ณผ 6
์ 2 ์ ์ฐ์
๋ณ ๊ธฐ์ ํ์ ํน์ฑ 9
์ 3 ์ ํนํ์ถ์, ๋ถ๊ฐ๊ฐ์น, ์ทจ์
์์ ์๊ด์ฑ 14
์ 3 ์ฅ ๊ธฐ์ ํ์ , ๊ธฐ์
์ฑ๊ณผ, ๊ณ ์ฉ์ ์ฐ๊ด๊ด๊ณ 17
์ 1 ์ ์ ๋ก 17
์ 2 ์ ์ ํ์ฐ๊ตฌ 18
์ 3 ์ ๋ถ์๋ฐฉ๋ฒ ๋ฐ ๋ถ์์๋ฃ 25
์ 4 ์ ๋ถ์๊ฒฐ๊ณผ 33
์ 5 ์ ์ ๊ฒฐ 40
์ 4 ์ฅ ๊ธฐ์ ํ์ , ๋์
์์ฐ์ฑ, ๋์
๋
ธ๋์ ์ฐ๊ด๊ด๊ณ 42
์ 1 ์ ์ ๋ก 42
์ 2 ์ ์ ํ์ฐ๊ตฌ 43
์ 3 ์ ๋ถ์๋ฐฉ๋ฒ ๋ฐ ๋ถ์์๋ฃ 46
์ 4 ์ VAR๋ชจํ ์ถ์ ๊ฒฐ๊ณผ 54
์ 5 ์ Threshold VAR๋ชจํ ์ถ์ ๊ฒฐ๊ณผ 65
์ 6 ์ ์ ๊ฒฐ 69
์ 5 ์ฅ ์๋ฌผ์ ํ ์ ๋ต๊ณผ ์๋์ฑ๊ณผ 71
์ 1 ์ ์ ๋ก 71
์ 2 ์ ์ ํ์ฐ๊ตฌ 73
์ 3 ์ ๋ถ์๋ฐฉ๋ฒ ๋ฐ ๋ถ์์๋ฃ 77
์ 4 ์ ์ฐ๊ด๊ท์น ๋์ถ๊ฒฐ๊ณผ 91
์ 5 ์ ์ค์ฆ๋ชจํ ์ถ์ ๊ฒฐ๊ณผ 99
์ 6 ์ ์ ๊ฒฐ 106
์ 6 ์ฅ ๊ฒฐ ๋ก 108
์ฐธ๊ณ ๋ฌธํ 111
๋ถ ๋ก 123
Abstract 136๋ฐ