13 research outputs found

    Beyond 5G ํ†ต์‹  ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์ฑ„๋„ ์˜ˆ์ธก ๋ฐ ์œ„์น˜ ์ถ”์ • ๊ธฐ๋ฒ• ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€,2019. 8. ๊น€์„ฑ์ฒ .Recently, to cope with rapidly increasing data traffic, ITU-R established the concept of 5th generation mobile communication (5G) and defined requirements. Additionally, the 3GPP group has developed a new radio (NR) standard for 5G use, and the 5G era has opened in Korea. Unlike current mobile telecommunication systems, the 5G mobile telecommunication system has high speed, ultra-low delay, super-connected characteristics, and it is planned to be used for IoT. Also, the 5G will use the millimeter-wave band as an approach for ultra-high speed communication. The millimeter-wave band uses a wide frequency band. Thus, high data rates can be achieved. However, high path loss, attenuation due to diffraction, etc. are significant challenges in using the millimeter-wave. It is necessary to study the propagation characteristics of waves in detail to utilize the millimeter-wave in a communication system. In particular, to represent the millimeter-wave characteristic in which the attenuation due to diffraction and transmission is very intense, it is necessary to analyze the influence of various obstacles on the millimeter-wave propagation characteristic. Also, the 5G system considers the base station that can move to flexibly cope with the increasing data traffic and the disaster situation. Fast and accurate channel analysis and coverage prediction are essential for mobile base stations, such as drones. The 5G and beyond system, meanwhile, plans to utilize the IoT platform actively. Estimating the location of devices is an essential aspect of increasing the practicality of IoT platforms. In this thesis, I present techniques for resolving various issues that the beyond 5G system faces. First, I proposed a method for improving the ranging performance for the localization using orthogonal frequency-division multiplexing-based communication system. The most difficult aspect of performing localization using the time-of-arrival information of a communication system is distinguishing indirect paths and noise from the direct path (DP) when the DP is blocked by obstacles. The combination of interference cancellation and an enhanced path detector is proposed to remove interference from nearby paths and detect low power DP. The proposed method is verified in 802.11ac environments, and it shows improved performance compared to conventional methods. Next, I model roadside trees using a variety of techniques to analyze their effect on the accuracy of channel modeling using ray tracing simulation. The roadside trees were modeled as objects transmitting, reflecting, and diffracting electromagnetic waves. I noted that the results of ray tracing simulations that included roadside trees were more accurate than simulations without tree effects, based on the deviations from the experimentally measured results. Finally, I propose a new algorithm for predicting the path loss exponent of outdoor millimeter-wave band channels through deep learning method. The proposed algorithm has the advantage of requiring less inference time compared to existing deterministic channel models while concretely considering the topographical characteristics. I used three-dimensional ray tracing to generate the outdoor millimeter-wave band channel and path loss exponent. I trained a neural network with generated path loss exponent. To evaluate the performance of the proposed method, I analyzed the influence of the hyperparameters and environmental features, for example, building density and average distance from the transmitter.์ตœ๊ทผ, ๊ธ‰๊ฒฉํžˆ ๋Š˜์–ด๋‚˜๋Š” ๋ฐ์ดํ„ฐ ํŠธ๋ž˜ํ”ฝ์„ ๋Œ€๋น„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ITU-R์—์„œ๋Š” 5์„ธ๋Œ€ ์ด๋™ํ†ต์‹  ๊ฐœ๋…์„ ์ •๋ฆฝํ•˜๊ณ  ์š”๊ตฌ์‚ฌํ•ญ์„ ์ •์˜ํ•˜์˜€๋‹ค. ์ด์— ๋งž์ถ”์–ด 3GPP ๋‹จ์ฒด๋Š” 5G ์šฉ๋„์˜ New radio (NR) ๊ทœ๊ฒฉ์„ ๊ฐœ๋ฐœํ•˜์˜€์œผ๋ฉฐ, ํ•œ๊ตญ์—์„œ๋Š” 5G ์‹œ๋Œ€๊ฐ€ ์—ด๋ฆฌ๊ฒŒ ๋˜์—ˆ๋‹ค. 5G ์ด๋™ ํ†ต์‹  ์‹œ์Šคํ…œ์€ ๊ธฐ์กด 4G๊นŒ์ง€์˜ ์ด๋™ํ†ต์‹  ์‹œ์Šคํ…œ๊ณผ๋Š” ๋‹ฌ๋ฆฌ ์ดˆ๊ณ ์†, ์ดˆ์ €์ง€์—ฐ, ์ดˆ ์—ฐ๊ฒฐ ํŠน์„ฑ์„ ๊ฐ€์ง€๋ฉฐ IoT ๋“ฑ์— ์ ๊ทน์ ์œผ๋กœ ํ™œ์šฉ๋  ๊ณ„ํš์ด๋‹ค. ๋˜ํ•œ ์ดˆ๊ณ ์† ํ†ต์‹ ์„ ์œ„ํ•œ ์ ‘๊ทผ์œผ๋กœ 5G์—์„œ๋Š” millimeter-wave ๋Œ€์—ญ์„ ์‚ฌ์šฉํ•  ๊ณ„ํš์ด๋‹ค. millimeter-wave ๋Œ€์—ญ์€ ๋„“์€ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๊ธฐ์— ๋†’์€ ์ „์†ก๋ฅ ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๋†’์€ ๊ฒฝ๋กœ์†์‹ค, ํšŒ์ ˆ์— ์˜ํ•œ ๊ฐ์‡„ ๋“ฑ์€ millimeter-wave ์‚ฌ์šฉ์— ์žˆ์–ด ํฐ ๋‚œ์ œ์ด๋‹ค. millimeter-wave๋ฅผ ํ†ต์‹  ์‹œ์Šคํ…œ์—์„œ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ „ํŒŒ(wave)์˜ ์ „ํŒŒ(propagation)ํŠน์„ฑ์„ ๋ฉด๋ฐ€ํžˆ ์—ฐ๊ตฌํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ํŠนํžˆ ํšŒ์ ˆ๊ณผ ํˆฌ๊ณผ์— ์˜ํ•œ ๊ฐ์‡„๊ฐ€ ๋งค์šฐ ์‹ฌํ•œ millimeter-wave ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด์„  ์‹ค์™ธ์— ์กด์žฌํ•˜๋Š” ๋‹ค์–‘ํ•œ ์žฅ์• ๋ฌผ๋“ค์ด millimeter-wave ์ „ํŒŒ ํŠน์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•ด์•ผ ํ•œ๋‹ค. ๋˜ํ•œ 5G ์‹œ์Šคํ…œ์—์„œ๋Š” ๋‚ ์ด ๊ฐˆ์ˆ˜๋ก ์ฆ๊ฐ€ํ•˜๋Š” ํŠธ๋ž˜ํ”ฝ์„ ๊ฐ๋‹นํ•˜๊ณ , ์žฌ๋‚œ ์ƒํ™ฉ ๋“ฑ์— ์œ ์—ฐํ•˜๊ฒŒ ๋Œ€์ฒ˜ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ด๋™๊ฐ€๋Šฅ ๊ธฐ์ง€๊ตญ์„ ๊ณ ๋ คํ•˜๊ณ  ์žˆ๋‹ค. ๋“œ๋ก ๊ณผ ๊ฐ™์ด ์ด๋™ ๊ฐ€๋Šฅํ•œ ๊ธฐ์ง€๊ตญ์—์„œ๋Š” ๋น ๋ฅด๊ณ  ์ •ํ™•ํ•œ ์ฑ„๋„ ๋ถ„์„๊ณผ ์ปค๋ฒ„๋ฆฌ์ง€ ์˜ˆ์ธก์ด ํ•„์ˆ˜์ ์ด๋‹ค. ํ•œํŽธ, 5G ์‹œ์Šคํ…œ์—์„œ๋Š” ์ดˆ ์—ฐ๊ฒฐ ํŠน์„ฑ๊ณผ ํ•จ๊ป˜ IoT ํ”Œ๋žซํผ์„ ์ ๊ทน์ ์œผ๋กœ ํ™œ์šฉํ•  ๊ณ„ํš์ด๋‹ค. IoT ํ”Œ๋žซํผ์˜ ์‹ค์šฉ์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋‹ค์ˆ˜์˜ ๊ธฐ๊ธฐ์— ๋Œ€ํ•œ ์œ„์น˜ ์ถ”์ •์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” 5G ์‹œ์Šคํ…œ์ด ๋Œ€๋ฉดํ•œ ๋‹ค์–‘ํ•œ ์ด์Šˆ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์šฐ์„  ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธธ๊ฐ€์˜ ๊ฐ€๋กœ์ˆ˜๊ฐ€ ๊ด‘์„  ์ถ”์  ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์‚ฌ์šฉํ•œ ์ฑ„๋„ ๋ชจ๋ธ๋ง์˜ ์ •ํ™•์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ฐ€๋กœ์ˆ˜๋Š” ์ „ํŒŒ๋ฅผ ํˆฌ๊ณผ, ๋ฐ˜์‚ฌ ๋ฐ ํšŒ์ ˆ ์‹œํ‚ค๋Š” ๋ฌผ์ฒด๋กœ ๋ชจ๋ธ๋ง ๋˜์—ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ€๋กœ์ˆ˜๊ฐ€ ํฌํ•จ๋œ ๊ด‘์„  ์ถ”์  ์‹œ๋ฎฌ๋ ˆ์ด์…˜์˜ ๊ฒฐ๊ณผ๊ฐ€ ๊ธฐ์กด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ์— ๋น„ํ•˜์—ฌ ์‹คํ—˜์ ์œผ๋กœ ์ธก์ •๋œ ๊ฒฐ๊ณผ์™€ ๋งค์šฐ ์œ ์‚ฌํ•˜๋‹ค๋Š” ์ ์„ ๋ฐœ๊ฒฌํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ๋Š” ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ์‹ค์™ธ ๋ฐ€๋ฆฌ๋ฏธํ„ฐ ํŒŒ ๋Œ€์—ญ ์ฑ„๋„์˜ ๊ฒฝ๋กœ ์†์‹ค ์ง€์ˆ˜๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ธฐ์กด์˜ ๊ฒฐ์ •๋ก ์  ์ฑ„๋„ ๋ชจ๋ธ์— ๋น„ํ•ด ์ถ”๋ก  ์‹œ๊ฐ„์„ ๋œ ํ•„์š”๋กœ ํ•œ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์œผ๋ฉฐ, ์ง€ํ˜•์  ํŠน์„ฑ์„ ๊ตฌ์ฒด์ ์œผ๋กœ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ๋‹ค. ์‹ค์™ธ ๋ฐ€๋ฆฌ๋ฏธํ„ฐ ํŒŒ ์ฑ„๋„์˜ ๊ฒฝ๋กœ ์†์‹ค ์ง€์ˆ˜๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ด‘์„  ์ถ”์  ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ƒ์„ฑ๋œ ๊ฒฝ๋กœ ์†์‹ค ์ง€์ˆ˜๋กœ ํ•ฉ์„ฑ ๊ณฑ ์‹ ๊ฒฝ๋ง์„ ํ›ˆ๋ จ์‹œ์ผฐ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๊ฑด๋ฌผ์˜ ๋ฐ€๋„์™€ ์†ก์‹ ๊ธฐ๋กœ๋ถ€ํ„ฐ์˜ ํ‰๊ท  ๊ฑฐ๋ฆฌ์™€ ๊ฐ™์€ ํ™˜๊ฒฝ ํŠน์„ฑ์˜ ์˜ํ–ฅ๊ณผ ํ•˜์ดํผ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์˜ํ–ฅ์„ ๋ถ„์„ํ–ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ OFDM ๊ธฐ๋ฐ˜์˜ ํ†ต์‹  ์‹œ์Šคํ…œ์„ ์ด์šฉํ•˜์—ฌ ์œ„์น˜ ์ถ”์ •์„ ์œ„ํ•œ ๊ฑฐ๋ฆฌ์ธก์ • ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ํ†ต์‹  ์‹œ์Šคํ…œ์˜ ToA ์ •๋ณด๋ฅผ ์‚ฌ์šฉํ•  ๋•Œ ์œ„์น˜ ์ถ”์ •์— ์žˆ์–ด ๊ฐ€์žฅ ์–ด๋ ค์šด ์ธก๋ฉด์€ ์ง์ ‘๊ฒฝ๋กœ๊ฐ€ ์žฅ์• ๋ฌผ์— ์˜ํ•ด ์ฐจ๋‹จ๋  ๋•Œ ์ง์ ‘ ๊ฒฝ๋กœ์™€ ๊ฐ„์ ‘ ๊ฒฝ๋กœ ๋ฐ ์žก์Œ์„ ๊ตฌ๋ณ„ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ„์„ญ ์ œ๊ฑฐ์™€ ํ–ฅ์ƒ๋œ ๊ฒฝ๋กœ ๊ฒ€์ถœ๊ธฐ์˜ ๊ฒฐํ•ฉ์œผ๋กœ ์ธ์ ‘ํ•œ ๊ฒฝ๋กœ ๋“ค๋กœ๋ถ€ํ„ฐ์˜ ๊ฐ„์„ญ์„ ์ œ๊ฑฐํ•˜๊ณ  ์ €์ „๋ ฅ DP๋ฅผ ๊ฒ€์ถœํ•œ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ 802.11ac ํ™˜๊ฒฝ์—์„œ ๊ฒ€์ฆ๋˜์—ˆ์œผ๋ฉฐ ๊ธฐ์กด ๋ฐฉ๋ฒ•์— ๋น„ํ•ด ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค.Contents Abstract Contents List of Tables List of Figures 1 INTRODUCTION 2 Enhanced Path Detection based on Undesired Leakage Cancellation for Range Estimation of Communication-based Positioning System in Indoor Environment 2.1 Motivation 2.2 System Model and Problem Definition 2.3 Proposed Method 2.3.1 Successive Path Detection with Interference Cancellation 2.3.2 Enhanced Path Detection Using CFAR 2.3.3 Combination of Interference Cancellation and Enhanced Path Detector 2.4 Numerical Results 2.5 Summary iii 3 Improving the Accuracy of Millimeter Wave Ray Tracing Simulations by Modeling Roadside Trees 3.1 Motivation 3.2 Measurement Setup and Environments 3.2.1 Measurement System 3.2.2 Measurement Environments 3.3 Simulation Methodology 3.3.1 Map Generation and Roadside Tree Modeling 3.3.2 Ray Tracing Simulation Method 3.4 Validation of Ray Tracing Simulation 3.4.1 Path Loss Analysis 3.4.2 Multipath Component Analysis 3.4.3 Computational Complexity 3.5 Summary 4 Path Loss Exponent Prediction for Outdoor Millimeter Wave Channels through Deep Learning 4.1 Motivation 4.2 Processing Training Data 4.2.1 Map transformation process 4.2.2 Generating path loss exponent for output data 4.3 Neural Network Structure 4.4 Numericl Result Analysis 4.4.1 Simulation parameters 4.4.2 Optimal hyperparameter selection 4.4.3 Relationship between environment and prediction accuracy 4.5 Summary 5 ConclusionDocto

    ๊ธฐ์ดˆ์ „์žํ˜„๋ฏธ๊ฒฝ

    No full text

    ์žฌ๋ฃŒ๊ฒฐ์ •ํ•™

    No full text

    ์ „์žํ˜„๋ฏธ๊ฒฝ์˜ ์‹ค์ œ

    No full text

    ๊ตญ๋ฐฉ๋ฒค์ฒ˜

    No full text

    ๊ธฐ๊ณ„ํ•™์Šต์„ ์ด์šฉํ•œ ๋ฐ˜์‘์œ ๋™ ์ˆ˜์น˜ํ•ด์„์˜ ์ƒ์„ธ๋ฐ˜์‘๊ธฐ๊ตฌ ๋Œ€์ฒด ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ์šฐ์ฃผ์‹œ์Šคํ…œ ์ „๊ณต, 2022. 8. ์ด๋ณต์ง.์—ฐ์†Œ ํ™”ํ•™๋ฐ˜์‘์˜ ์ƒ์„ธ๋ฐ˜์‘๊ธฐ๊ตฌ์— ๋Œ€ํ•œ ์ •๋ณด๋Š” ๋ฐœ์ „์„ ๊ฑฐ๋“ญํ•˜์˜€์ง€ ๋งŒ ์ด๋ฅผ ์ง์ ‘ ์ˆ˜์น˜ํ•ด์„์— ํ™œ์šฉํ•  ๋•Œ๋Š” ๋ง‰๋Œ€ํ•œ ๊ณ„์‚ฐ ๋น„์šฉ์ด ๋ฐœ์ƒํ•˜๊ฒŒ ๋œ๋‹ค. ์ ํ™”, ์†Œ์—ผ, ์—ฐ์†Œ ๋ถˆ์•ˆ์ •๊ณผ ๊ฐ™์€ ์—ฐ์†Œ ํ˜„์ƒ์„ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜ ๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ฐ˜์‘์œ ๋™ ํ•ด์„์˜ ์ €๋น„์šฉํ™”๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. ์ตœ๊ทผ ๊ธฐ๊ณ„ํ•™ ์Šต ๊ธฐ๋ฒ•์€ ๋ณต์žกํ•˜๊ณ  ๋น„์„ ํ˜•์ ์ธ ํ•จ์ˆ˜๋ฅผ ์‰ฝ๊ฒŒ ๋ชจ๋ธ๋งํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ๊ณ„ ์‚ฐ ์†๋„๊ฐ€ ๋น ๋ฅด๊ณ  ๋ฉ”๋ชจ๋ฆฌ ์ ์œ ์œจ์ด ๋‚ฎ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์–ด ๋‹ค์–‘ํ•œ ์—ฐ์†Œ ๋ถ„์•ผ ์—ฐ๊ตฌ์— ์ ‘๋ชฉ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐ์กด ์•„๋ ˆ๋‹ˆ์šฐ์Šค ๊ธฐ๋ฐ˜์˜ ์ƒ์„ฑํ•ญ ์‚ฐ์ถœ ๊ธฐ๋ฒ•์„ ๋Œ€์ฒดํ•˜์—ฌ ํ™”ํ•™์ข…์˜ ์ƒ์„ฑ๋ฅ ์„ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ ๊ณ„ํ•™์Šต ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฒ•์˜ ์ผ์ข…์ธ ์ธ๊ณต์‹ ๊ฒฝ๋ง์ด ํ™œ ์šฉ๋˜์—ˆ์œผ๋ฉฐ ๋‹ค์–‘ํ•œ ์—ฐ์†Œํ•ด์„ ๋ฌธ์ œ์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด ์‹ ๊ฒฝ๋ง์— ๋Œ€ํ–ฅ๋ฅ˜ ํ™•์‚ฐ ํ™”์—ผ ํ•ด๋ฅผ ํ•™์Šต์‹œ์ผฐ๋‹ค. ํ™•์‚ฐํ™”์—ผ์˜ 1์ฐจ์› ์ •์ƒํ•ด ํ•ด์„์ž์™€ 9๊ฐœ ์˜ ํ™”ํ•™์ข…๊ณผ 19๊ฐœ์˜ ํ™”ํ•™๋ฐ˜์‘์œผ๋กœ ๊ตฌ์„ฑ๋œ ์ˆ˜์†Œ/์‚ฐ์†Œ ๋ฐ˜์‘๊ธฐ๊ตฌ๋ฅผ ํ™œ ์šฉํ•˜์—ฌ ํ™”ํ•™์ข…์˜ ์งˆ๋Ÿ‰๋ถ„์œจ, ์˜จ๋„, ํ™”ํ•™์ข…์˜ ์ƒ์„ฑํ•ญ์œผ๋กœ ๊ตฌ์„ฑ๋œ ํ•™์Šต ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ์‹ ๊ฒฝ๋ง ํ•™์Šต ๊ณผ์ •์—์„œ ํ™”ํ•™๋ฐ˜์‘์—์„œ์˜ ์›์†Œ์งˆ๋Ÿ‰๋ณด์กด์„ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•ด ํ‰๊ท  ์ œ๊ณฑ ์˜ค์ฐจ์— ์›์†Œ์งˆ๋Ÿ‰๋ณด์กด์„ ๊ทœ ์ œํ•˜๋Š” ํ•ญ์ด ์ถ”๊ฐ€๋œ ํ•จ์ˆ˜๋ฅผ ์†์‹ค ํ•จ์ˆ˜๋กœ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ตฌ์ถ•๋œ ์‹ ๊ฒฝ๋ง์˜ ์˜ˆ์ธก ์ •ํ™•๋„์™€ ๊ณ„์‚ฐ ํšจ์œจ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ์กด ์•„๋ ˆ๋‹ˆ์šฐ์Šค ๊ธฐ๋ฐ˜์˜ ์ƒ์„ฑ๋ฅ  ์‚ฐ์ถœ ๊ธฐ๋ฒ•๊ณผ ๋น„๊ตํ•˜์˜€๊ณ  ์‹ ๊ฒฝ๋ง์˜ ์‘์šฉ์„ฑ ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ํ™•์‚ฐํ™”์—ผ์˜ 1์ฐจ์› ์ •์ƒํ•ด ํ•ด์„์ž์— ํƒ‘์žฌํ•œ ํ›„ ์ˆ˜ ์น˜ํ•ด์„์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ตฌ์ถ•๋œ ์‹ ๊ฒฝ๋ง์€ ๊ธฐ์กด ๊ธฐ๋ฒ•๋ณด๋‹ค ๋น ๋ฅธ ๊ณ„์‚ฐ ์†๋„๋ฅผ ๋ณด์ด๋ฉด์„œ ํ™”ํ•™์ข…์˜ ์ƒ์„ฑํ•ญ์„ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜์˜€๊ณ  ํ™•์‚ฐํ™”์—ผ์˜ 1์ฐจ์› ์ •์ƒํ•ด ํ•ด์„์ž์— ํƒ‘์žฌ๋˜์—ˆ์„ ๋•Œ๋„ ํ™” ์—ผ ๊ตฌ์กฐ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์žฌํ˜„ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.Reducing the computational cost of chemical kinetics is essential to implement detailed reaction mechanisms into realistic numerical simulations. The present study introduced an artificial neural network (ANN) that can predict the chemical source terms of each species for the given species mass fractions and temperature, replacing the conventional chemical terms based on Arrhenius rate equations. The ANN was trained using numerical solutions of opposed-flow flames that can cover a wide range of combustion problems. The OPPDIF code and a detailed reaction mechanism for hydrogen and air with 9 species and 19 reactions were used to generate a training dataset comprised of species mass fractions, temperature, chemical source terms. A physics-guided loss function that considers mass conservation of elemental species was employed. Using the trained ANN, a modified OPPDIF, named OPPDIF-ANN, was prepared by replacing the CKWYP with CKWYP-ANN evaluating the chemical sources via the trained ANN. For multiple global strain rate conditions, the solutions using ANN-based source terms were proven to be identical to those using Arrhenius source terms.1. Introduction 1 2. Numerical method 5 3. Machine learning method 6 3.1 Artificial neural network (ANN) 6 3.2 Data generation 8 3.3 Data preprocessing 9 3.4 ANN modeling 10 4. Results 15 4.1 ANN testing 16 4.2 Performance of ANN 18 4.3 Computational efficiency of ANN 29 4.4 Applicability of ANN 30 5. Conclusion 42 Bibliography 44 Abstract in Korean 49์„

    ๋™์  ๊ด€์ธก์˜ค์ฐจ ์„ ํ˜•ํ™” ๋ฐฉ๋ฒ•์ด ๊ฐ€๋Šฅํ•œ ์ถฉ๋ถ„ ์กฐ๊ฑด

    No full text
    Thesis (master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2002.Maste

    ๊ธฐ์ดˆ ์ „์žํ˜„๋ฏธ๊ฒฝํ•™

    No full text
    corecore