38 research outputs found

    A Study on Choi Jaeseo`s literary theory

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ตญ์–ด๊ตญ๋ฌธํ•™๊ณผ ํ˜„๋Œ€๋ฌธํ•™์ „๊ณต,1995.Docto

    ์‚ฌํšŒ์  ๊ธฐ์—…๊ฐ€์ •์‹  ๊ตญ์ œ์ปจํผ๋Ÿฐ์Šค 2010(์‚ฌํšŒ์  ๊ธฐ์—…๊ฐ€ ์–‘์„ฑ์„ ์œ„ํ•œ ์ •๋ถ€์˜ ์—ญํ•  ๋ฐ ๊ณผ์ œ)

    No full text
    ๋…ธํŠธ : ๋ฐœํ‘œ์ž๋ฃŒ: https://www.kdevelopedia.org/Resources/industry-technology/์‚ฌํšŒ์ ๊ธฐ์—…๊ฐ€-์–‘์„ฑ์„-์ •๋ถ€์˜-์—ญํ• -๊ณผ์ œ--04201908080152108.d

    ๅœŸๅœฐๆ”ถ็”จ่ฃœๅ„Ÿ๏คŠ์— ๋Œ€ํ•œ ไปฃๅ„Ÿ่ซ‹ๆฑ‚ๆฌŠ์˜ ่กŒไฝฟ์— ๊ด€ํ•˜์—ฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธๅคงๅญธๆ ก ๅคงๅญธ้™ข :ๆณ•ๅญธ็ง‘ ๆฐ‘ๆณ•ๅฐˆๆ”ป,1996.Maste

    ์—ด๋ฆฐ์ถฉ๋‚จ 56ํ˜ธ-[ํŠน์ง‘]์ถฉ๋‚จ์—์„œ์˜ ์‚ฌํšŒ์ ๊ฒฝ์ œ ํ™œ์„ฑํ™” ๋ฐฉ์•ˆ

    No full text
    1. ์„œ๋ก  ์ตœ๊ทผ ํ•œ๊ตญ์—์„œ ์‚ฌํšŒ์ ๊ฒฝ์ œ-์‚ฌํšŒ์ ๊ธฐ์—…, ์ปค๋ฎค๋‹ˆํ‹ฐ ๋น„์ฆˆ๋‹ˆ์Šค, ํ˜‘๋™์กฐํ•ฉ ๋“ฑ ํฌ๊ด„-์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๋งค์šฐ ๋†’์•„์ง€๊ณ  ์žˆ๋‹ค. ๊ณ ์šฉ๋ถ€ ๋ฟ ์•„๋‹ˆ๋ผ ํ–‰์•ˆ๋ถ€ยท์ง€๊ฒฝ๋ถ€ยท๋†๋ฆผ๋ถ€ ๋“ฑ ๋‹ค์–‘ํ•œ ์ •๋ถ€ ๋ถ€์ฒ˜์—์„œ ๊ด€๋ จ ์ •์ฑ…์‚ฌ์—…๋“ค์„ ๊ฒฝ์Ÿ์ ์œผ๋กœ ์ถ”์ง„์ค‘์ด๋ฉฐ, ์ง€๋ฐฉ์ž์น˜๋‹จ์ฒด๋“ค ์—ญ์‹œ๋„ ์‚ฌํšŒ์ ๊ฒฝ์ œ๊ฐ€ ์ง€์—ญ์ฃผ๋ฏผ์˜ ์ฐธ์—ฌ์™€ ์ง€์—ญ์ž์‚ฐ ์ฆ์‹์— ๊ธฐ์—ฌํ•˜๋Š” ์ƒˆ๋กœ์šด ์ง€์—ญ๋ฐœ์ „ ์ „๋žต์ด๋ผ๋Š” ์ธก๋ฉด์—์„œ ๊ด€์‹ฌ์„ ๊ฐ–๊ณ  ์ง€์—ญ์ •์ฑ…์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์‹œ์ž‘ํ•˜์˜€๋‹ค. -์ดํ›„ ์ƒ๋žต1. ์„œ๋ก  2. ์ค‘์•™์ •๋ถ€ ์ •์ฑ…ํ‰๊ฐ€๋ฅผ ํ†ตํ•ด ๋ณธ ์ง€์ž์ฒด์˜ ์ถ”์ง„ ์›์น™ 3. ์ถฉ๋‚จ ์‚ฌํšŒ์ ๊ฒฝ์ œ์˜ ํ˜„ํ™ฉ๋ถ„์„์„ ํ†ตํ•ด ๋ณธ ํ™œ์„ฑํ™” ๊ณผ์ œ 4. ํ•ด์™ธ ์‚ฌ๋ก€๋ฅผ ํ†ตํ•ด ๋ณธ ์‚ฌํšŒ์ ๊ฒฝ์ œ๊ณ„์˜ ๊ณผ์ œ 5. ๊ฒฐ

    ่ญฆๅฏŸ์˜ ๆˆๆžœ็ตฆ ๅˆถๅบฆ์— ๊ด€ํ•œ ็ก็ฉถ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ํ–‰์ •๋Œ€ํ•™์› :ํ–‰์ •ํ•™๊ณผ ํ–‰์ •ํ•™์ „๊ณต,1999.Maste

    Frequency-Domain Approaches to Hardware-Limited Communications: Sub-Nyquist Sampling and Crosstalk

    No full text
    Doctor๋ณธ ๋…ผ๋ฌธ์€ ํ•˜๋“œ์›จ์–ด ์ œ์•ฝ์ด ์žˆ๋Š” ํ†ต์‹ ์—์„œ ๋‘ ๊ฐ€์ง€์˜ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ด๋™ ํ†ต์‹ ์—์„œ๋Š” ์ •๋ณด์˜ ์†ก์ˆ˜์‹ ์„ ์œ„ํ•ด ๋” ๋„“์€ ๋Œ€์—ญํญ๊ณผ ๋” ๋งŽ์€ ์ˆ˜์˜ ์•ˆํ…Œ๋‚˜๊ฐ€ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์•„๋‚ ๋กœ๊ทธ-๋””์ง€ํ„ธ ์ปจ๋ฒ„ํ„ฐ๋‚˜ ๋””์ง€ํ„ธ ์‹ ํ˜ธ ํ”„๋กœ์„ธ์„œ ๋“ฑ์˜ ํ•˜๋“œ์›จ์–ด ์ œ์•ฝ์œผ๋กœ ์ธํ•ด ๊ด‘๋Œ€์—ญ ์‹ ํ˜ธ์— ํ•„์š”ํ•œ ์†๋„ ๋ฐ ์ „๋ ฅ์„ ์ง€์›ํ•˜๋Š” ๊ฒƒ์ด ํ˜„์‹ค์ ์ด์ง€ ์•Š์„ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์‹ฌ๋ฏธ์ ์ธ ์ด์œ  ๋ฐ ๊ณต๊ฐ„ ์ œ์•ฝ์œผ๋กœ ์ธํ•ด, ์†Œํ˜• MIMO ์•ˆํ…Œ๋‚˜๋ฅผ ๊ฐ€์ง„ ์‹œ์Šคํ…œ์€ RF ๋ˆ„์„ค๋กœ ์ธํ•œ ํฌ๋กœ์Šค ํ† ํฌ๋ฅผ ๊ฒช์„ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ ๋‚˜์ดํ€ด์ŠคํŠธ ์ฃผํŒŒ์ˆ˜๋ณด๋‹ค ๋‚ฎ์€ ์ƒ˜ํ”Œ๋ง ์ฃผํŒŒ์ˆ˜๋ฅผ ๊ฐ€์ง€๋Š” ์ƒ˜ํ”Œ๋ง (์„œ๋ธŒ-๋‚˜์ดํ€ด์ŠคํŠธ ์ƒ˜ํ”Œ๋ง)์— ๋Œ€ํ•œ ์ด๋ก ์  ๋ถ„์„๊ณผ ์ฑ„๋„ ์‚ฌ์šด๋”์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ˆ„ํ™”๋ฅผ ์‹ค์งˆ์ ์œผ๋กœ ๋ณด์ •ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ๊ณตํ•œ๋‹ค. ์ฒซ๋ฒˆ์งธ๋กœ, ์„œ๋ธŒ-๋‚˜์ดํ€ด์ŠคํŠธ๋กœ ์ƒ˜ํ”Œ๋งํ•˜๋Š” ๊ฐ€์šฐ์‹œ์•ˆ ์ฑ„๋„์˜ ์šฉ๋Ÿ‰์„ ํŠน์„ฑํ™”ํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ๊ณ ๋ คํ•œ๋‹ค. ์—ฐ์† ์‹œ๊ฐ„ ๋Œ€์—ญ ๋Œ€์—ญํญ์ด ์ œํ•œ๋˜๋Š” ์„ ํ˜• ์‹œ๊ฐ„ ๋ถˆ๋ณ€ ๋‹จ์ผ ์ž…๋ ฅ ๋‹จ์ผ ์ถœ๋ ฅ ์ฑ„๋„์ด ๊ณ ๋ ค๋˜๋ฉฐ, ์ด ์ถœ๋ ฅ์€ ๊ด‘์˜ ์ •์ƒ๊ณผ์ • ๊ฐ€์šฐ์‹œ์•ˆ ์žก์Œ์— ์˜ํ•ด ์†์ƒ๋˜๊ณ , ๋‚˜์ดํ€ด์ŠคํŠธ ์ฃผํŒŒ์ˆ˜ ์ดํ•˜์˜ ์†๋„๋กœ ์ƒ˜ํ”Œ๋ง๋œ๋‹ค. ์ฃผํŒŒ์ˆ˜ํŽธ์ด(FREquency-SHift, FRESH) ๋ฒกํ„ฐ๋ผ์ด์ €๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋‚˜์ดํ€ด์ŠคํŠธ ์ฃผํŒŒ์ˆ˜ ์ดํ•˜์˜ ์†๋„๋กœ ์ƒ˜ํ”Œ๋ง๋œ ๊ฐ€์šฐ์‹œ์•ˆ ์ฑ„ํ„ธ์€ ๋”์ด์ƒ ์ƒ˜ํ”Œ๋Ÿฌ๊ฐ€ ์—†๋Š” ๋“ฑ๊ฐ€์˜ ์—ฐ์† ์‹œ๊ฐ„ ์„ ํ˜• ์‹œ๊ฐ„ ๋ถˆ๋ณ€ ๋‹ค์ค‘ ์ž…๋ ฅ ๋‹ค์ค‘ ์ถœ๋ ฅ ๊ฐ€์šฐ์‹œ์•ˆ ์žก์Œ ์ฑ„๋„๋กœ ๋ฐ”๋€Œ๊ฒŒ ๋œ๋‹ค. ์ด ๋ณ€ํ™˜์€ ๋‚˜์ดํ€ด์ŠคํŠธ ์ฃผํŒŒ์ˆ˜ ์ดํ•˜๋กœ ์ƒ˜ํ”Œ๋ง๋œ ์ฑ„๋„์˜ ์šฉ๋Ÿ‰ ๋ฐ ์ตœ์  ์ž…๋ ฅ์„ ๋‹ค์ค‘ ์ž…๋ ฅ ๋‹จ์ผ ์ถœ๋ ฅ ์‹œ์Šคํ…œ์˜ ๋ถ„์„๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ์‰ฝ๊ฒŒ ๊ตฌํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ค€๋‹ค. ์ฑ„๋„์˜ ์šฉ๋Ÿ‰์„ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ์ฑ„๋„์˜ ์ตœ์  ์ž…๋ ฅ์€ ์ผ๋ฐ˜์ ์œผ๋กœ cyclic water filling์„ ํ†ตํ•ด ์–ป์€ ๊ด‘์˜ ์ฃผ๊ธฐ์ •์ƒ์„ฑ ๊ฐ€์šฐ์‹œ์•ˆ ๋žœ๋ค ํ”„๋กœ์„ธ์Šค์ด๋‹ค. ๋˜ํ•œ ํŠน์ • ์กฐ๊ฑดํ•˜์—์„œ, ์ตœ์ ์˜ ์ฑ„๋„ ์ž…๋ ฅ์˜ ๊ด‘์˜ ์ฃผ๊ธฐ์ •์ƒ์„ฑ์„ ์„ ํ˜• ์ฃผ๊ธฐ์  ์‹œ๋ณ€ ์ฑ„๋„ (linear periodic time-variant channel, LPTV channel)์ด๋‚˜ ๊ด‘์˜ ์ฃผ๊ธฐ์ •์ƒ์„ฑ ๊ฐ€์šฐ์‹œ์•ˆ ์žก์Œ์„ ๊ฐ€์ง€๋Š” ์ฑ„๋„๋กœ ์ผ๋ฐ˜ํ™”ํ•œ๋‹ค. ๋‚˜์ดํ€ด์ŠคํŠธ ์ฃผํŒŒ์ˆ˜๋ณด๋‹ค ๋‚ฎ๊ฒŒ ์ƒ˜ํ”Œ๋งํ•˜์˜€์„ ๋•Œ, ์šฉ๋Ÿ‰ ์ €ํ•˜๋ฅผ ์ผ์œผํ‚ค์ง€ ์•Š๊ฑฐ๋‚˜ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฝ์šฐ์˜ ์˜ˆ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ๋‘๋ฒˆ์งธ๋กœ, ๋‚ด๋ถ€ ๋ˆ„ํ™”๊ฐ€ ์žˆ๋Š” MIMO ์ฑ„๋„ ์‚ฌ์šด๋”์˜ ๊ต์ •์„ ์ฃผํŒŒ์ˆ˜์˜์—ญ์—์„œ ๊ณ ๋ คํ•œ๋‹ค. ์‹œ์Šคํ…œ ๋ชจ๋ธ์€ ์†ก์‹ ๊ธฐ์™€ ์ˆ˜์‹ ๊ธฐ์˜ ๋‚ด๋ถ€ ๋ˆ„ํ™”์˜ ์˜ํ–ฅ์„ ๊ณ ๋ คํ•œ ์‘๋‹ต ํ–‰๋ ฌ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ œ์•ˆํ•œ๋‹ค. ๋ฐฑํˆฌ๋ฐฑ(back-to-back) ์ธก์ • ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์‘๋‹ต ํ–‰๋ ฌ์„ ์ถ”์ •ํ•˜๊ธฐ์œ„ํ•œ ์ตœ์†Œ ์ œ๊ณฑ ์‹œ์Šคํ…œ ์‹๋ณ„ ๋ฌธ์ œ๊ฐ€ ์ œ์•ˆ๋œ๋‹ค. ๋ณธ ๋ฌธ์ œ๋Š” ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ ๋žญํฌ-1 ๊ทผ์‚ฌ ๋ฌธ์ œ๋กœ ๋ณ€ํ™˜๋œ๋‹ค. ๋˜ํ•œ, ๋ฌด์„  ์ธก์ • ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด์ •ํ•˜๊ธฐ ์œ„ํ•œ ์ฑ„๋„ ์ถ”์ • ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์‹คํ—˜ ๋ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆํ•˜๋Š” ์‹œ์Šคํ…œ ๋ชจ๋ธ๋ง ๋ฐ ๊ต์ •๋ฒ•์ด ๋ˆ„ํ™”๋ฅผ ๋ฌด์‹œํ•˜๋Š” ์ข…๋ž˜์˜ ์ ‘๊ทผ ๋ฐฉ์‹๋ณด๋‹ค ์ฑ„๋„ ์‚ฌ์šด๋”์˜ ๋‚ด๋ถ€ ๋ˆ„ํ™”๋ฅผ ํ›จ์”ฌ ์ž˜ ๋ณด์ƒํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค.In this dissertation, two frequency-domain approaches are proposed to the communications with hardware limitations. In mobile communication, a wider bandwidth and a greater number of antennas are being used for the transmission and reception of information. However, due to hardware limitations on analog-to-digital converters and digital signal processors, it may not be practical to support the speed and power consumption required for wideband signals. Moreover, due to limited space and aesthetic reasons, a system with compact multiple-input multiple-output (MIMO) antennas may suffer from crosstalk due to the radio-frequency (RF) leakage. In the frequency domain, this dissertation presents a theoretical analysis of the sub-Nyquist sampler used for communications and a practical calibration algorithm to compensate for the crosstalk occurred in channel sounders. First, the problem of characterizing the capacity of sub-Nyquist sampled Gaussian channels is considered. A continuous-time (CT) band-limited linear time-invariant (LTI) single-input single-output channel is considered, whose output is corrupted by a wide-sense stationary Gaussian noise and sampled below the Nyquist rate. By using a FREquency-SHift (FRESH) vectorizer and a FRESH scalarizer, the sub-Nyquist sampled Gaussian channel is converted to an equivalent CT LTI multiple-input single-output or multiple-output Gaussian noise channel with no sampler any longer. This conversion enables the derivation of the sub-Nyquist sampled channel capacity and an optimal input distribution. It is shown that a capacity-achieving channel input is in general a wide-sense cyclostationary (WSCS) Gaussian random process obtained by a cyclic water filling. It is also shown that, under certain conditions, the cyclostationarity of an optimal channel input generalizes to a linear periodically time-varying channel with an additive WSCS Gaussian noise. Examples are provided that include the cases where a sub-Nyquist rate sampling incurs no or negligible capacity degradation. Second, the calibration of a MIMO channel sounder with internal crosstalk is considered. A system model is proposed, taking into account the effect of the internal crosstalk in the transmitter and receiver response matrices. A least-square system identification problem is then formulated to find the estimates of the response matrices from a set of back-to-back measurement data. It is shown that the problem can be converted to rank-one approximation problems in the frequency domain. In addition, a channel estimation method is proposed for calibrating over-the-air measurement data by using the identified response matrices of the sounder. Experimental and simulation results show that the proposed system modeling and identification procedure compensate for the internal crosstalk of the sounder much better than the conventional approach that ignores the crosstalk
    corecore