54 research outputs found

    ์••์ „์žฌ๋ฃŒ๋ฅผ ์ด์šฉํ•œ ๊ตฌ์กฐ๋ฌผ์˜ ๋Šฅ๋™์ง„๋™์ œ์–ด์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    Thesis (master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€ ๊ธฐ๊ณ„์ „๊ณต,2001.Maste

    Early metabolic defect in offsprings of non-insulin-dependent diabetes mellitus patients

    No full text
    ์˜ํ•™๊ณผ/์„์‚ฌ[ํ•œ๊ธ€] ์ธ์Š๋ฆฐ ๋น„์˜์กดํ˜• ๋‹น๋‡จ๋ณ‘ ํ™˜์ž์˜ ์ง๊ณ„์ž๋…€๋Š” ๋‹น๋‡จ์˜ ๋ฐœ๋ณ‘์œจ์ด ๋†’๋‹ค๊ณ  ์•Œ๋ ค์ง„๋ฐ”, ์ด๋Ÿฐ ํ™˜์ž๋“ค์˜ ์ Š์€ ์ž๋…€๋“ค์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ๋‹น๋Œ€์‚ฌ์˜ ์กฐ๊ธฐ ๊ฒฐํ•จ์ด ๋ฌด์—‡์ธ์ง€ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•˜์—ฌ ์ทŒ์žฅ์—์„œ์˜ ์ธ์Š๋ฆฐ ๋ถ„๋น„๋Šฅ๊ณผ ๋ง์ดˆ์กฐ์ง์—์„œ์˜ ์ธ์Š๋ฆฐ ์ €ํ•ญ์„ฑ์„ ๊ฐ๊ฐ ํ‰๊ฐ€ํ•˜๋Š” ๊ฒฝ๊ตฌ๋‹น๋ถ€ํ•˜๊ฒ€์‚ฌ ๋ฐ euglrcemic hyperinsulinemic clamp ๊ฒ€์‚ฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋™์‹œ์— ์ด๋“ค์—์„œ ์ œ 4ํ˜• ๋‹น์ˆ˜์†ก ์ฒด ์œ ์ „์ž์˜ ๋‹คํ˜•์„ฑ์—ฌ๋ถ€๋ฅผ RFLP(restriction fragment 1engh polymorphism)๋ฒ•์„ ํ†ตํ•˜์—ฌ ์•Œ์•„๋ณธ ๊ฒฐ๊ณผ ๋‹ค์Œ์˜ ๊ฒฐ๋ก ์„ ์–ป์—ˆ๋‹ค. 1. ๋Œ€์ƒ์ž๋Š” ๋ชจ๋‘ 70๋Œ€ ๋‚จ์ž์ด๊ณ  ์‹คํ—˜๊ตฐ 10๋ช…๊ณผ ๋Œ€์กฐ๊ตฐ 10๋ช…์œผ๋กœ ๊ตฌ์„ฑ๋˜์—ˆ๋‹ค. 2. ์–‘๊ตฐ์—์„œ ์‹ ์ฒด๊ณ„์ธก์น˜, ์ผ์ผ์—ด๋Ÿ‰์„ญ์ทจ๋Ÿ‰, ์ผ์ผ์—ด๋Ÿ‰์†Œ๋ชจ๋Ÿ‰๊ณผ ํ˜ˆ์ค‘ ์ง€์งˆ์น˜์—๋Š” ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค. 3. ๊ฒฝ๊ตฌ ๋‹น๋ถ€ํ•˜ ๊ฒ€์‚ฌ ๊ฒฐ๊ณผ ์–‘๊ตฐ์—์„œ ํ˜ˆ๋‹น๊ณผ ์”จ ํŽฉํƒ€์ด๋“œ ๋ฐ˜์‘์ด ์ •์ƒ์ ์ด์–ด์„œ ์ทŒ์žฅ์˜ ์ธ์Š๋ฆฐ ๋ถ„๋น„๋Šฅ์ด ์ •์ƒ์ž„์„ ์•Œ์•˜์œผ๋‚˜, 60๋ถ„์˜ ํ˜ˆ๋‹น, ์”จ ํŽฉํƒ€์ด๋“œ์™€ ์ธ์Š๋ฆฐ์น˜๊ฐ€ ์‹คํ—˜๊ตฐ์ด ๋Œ€์กฐ๊ตฐ์— ๋น„ํ•˜์—ฌ ์˜์˜์žˆ๊ฒŒ ๋†’์•˜๊ณ (p<0.05), ์œ ๋ฆฌ์ง€๋ฐฉ์‚ฐ์น˜๋Š” ์–‘๊ตฐ์—์„œ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค(Gluc ose 100 ยฑ 19 vs.77 ยฑ 19mg/dl; C-peptide 5.47 ยฑ 1.7 vs.3.32 ยฑ 1.88 ng/ml; Insulin 90.3ยฑ41.3 vs. 38.6ยฑ29.4 ฮผU/ml). 4. Euglycemic hyperinsu]inemic clamp study ์•Œ์•„ ๋ธ ๋ง์ดˆ์กฐ์ง์˜ ํฌ๋„๋‹น ์ด์šฉ์œจ์€ ์‹คํ—˜๊ตฐ์ด ๋Œ€์กฐ๊ตฐ์— ๋น„ํ•ด์„œ ์˜์˜์žˆ๊ฒŒ ๋‚ฎ์•˜๋‹ค(5.61ยฑ1.01 vs. 8.87ยฑ0.92mg/kg/min, pใ€ˆo.01). 5. ๋ง์ดˆ์กฐ์ง์˜ ํฌ๋„๋‹น ์ด์šฉ์œจ์€ ์ฒด์กฐ์„ฑ์ค‘ ๋งˆ๋ฅธ ์ฒด์ค‘(lean mass) ๋น„์œจ์— ์ง์„ ์˜ ๋น„๋ก€๊ด€๊ณ„๋กœ ์ฆ๊ฐ€ํ•˜์˜€๊ณ (r**2=0.49, pใ€ˆ0.05), ์ง€๋ฐฉ๋Ÿ‰(fat mass) ๋น„์œจ์—๋Š” ์—ญ์œผ๋กœ ๊ฐ์†Œํ•˜์˜€์œผ๋ฉฐ, ํŠนํžˆ ์‹คํ—˜๊ตฐ์ด ๋Œ€์กฐ๊ตฐ์— ๋น„ํ•˜์—ฌ ๋™์ผํ•œ ๋งˆ๋ฅธ ์ฒด์ค‘ ๋น„์œจ์— ๋Œ€ํ•œ ํฌ๋„๋‹น ์ด์šฉ์œจ์ด 2.0 - 3.0 mg/kg/min์ •๋„๋กœ ๊ฐ์†Œ๋˜์–ด ์žˆ์–ด์„œ ์ด๋งŒํผ์˜ ์ธ์Š๋ฆฐ ์ €ํ•ญ์„ฑ์ด ๊ทผ์œก์กฐ์ง์—์„œ ๋‚˜ํƒ€๋‚˜๊ณ  ์œ ์ „์ ์œผ๋กœ ์˜ํ–ฅ์„ ๋ฐ›์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. 6. 5๋ช…์˜ ์‹คํ—˜๊ตฐ๊ณผ 6๋ช… ๋Œ€์กฐ๊ตฐ์—์„œ ์–ป์€ DNA๋ฅผ ์ œํ•œํšจ์†Œ๋กœ Kpn I Bam HI๊ณผ Eco RI์„ ์ด์šฉํ•œ RFLP๋ฒ•์œผ๋กœ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ polymorphic Kpn I site๋Š” 5.8 kb์™€ 6.5๋กœ ๊ด€์ฐฐ๋˜์—ˆ์œผ๋‚˜ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๊ณ  ์ƒˆ๋กœ์šด ๋‹คํ˜•์„ฑ์€ ๋ณด์ด์ง€ ์•Š์•˜์œผ๋ฉฐ, ๋‹ค๋ฅธ ์ œํ•œํšจ์†Œ๋กœ์จ๋Š” ๋‹คํ˜•์„ฑ์ด ๊ด€์ฐฐ๋˜์ง€ ์•Š์•˜๋‹ค. ์ด์ƒ์˜ ๊ฒฐ๊ณผ๋กœ ์ธ์Š๋ฆฐ ๋น„์˜์กดํ˜• ๋‹น๋‡จ๋ณ‘ ํ™˜์ž์˜ 2์„ธ๋Š”, ๋น„๋ก 20๋Œ€ ์—ฐ๋ น์—์„œ ๋‹น๋‡จ์˜ ์ฆ์ƒ์ด ์—†๊ณ  ๊ณต๋ณต์‹œ์™€ ์‹คํ›„์˜ ํ˜ˆ๋‹น ๋ฐ ๊ฒฝ๊ตฌ ๋‹น๋ถ€ํ•˜ ๊ฒ€์‚ฌ๊ฐ€ ์ •์ƒ์ด๋”๋ผ๋„,euglycemic clamp study์—์„œ ๋ง์ดˆ์กฐ์ง์˜ ํฌ๋„๋‹น ์ด์šฉ์œจ์ด ์ •์ƒ์ธ์— ๋น„ํ•ด 30%์ •๋„ ๊ฐ์†Œ๋˜์–ด ์žˆ์–ด์„œ ์ธ์Š๋ฆฐ ๋น„์˜์กดํ˜• ๋‹น๋‡จ๋ณ‘์˜ ๋ณ‘์ธ์— ์žˆ์–ด์„œ ์กฐ๊ธฐ์— ๋‚˜ํƒ€๋‚˜๋Š” ๋‹น๋Œ€์‚ฌ์˜ ๊ฒฐํ•จ์€ ์ธ์Š๋ฆฐ ๋ถ„๋น„๋Šฅ ๊ฐ์†Œ๊ฐ€ ์•„๋‹ˆ๊ณ  ๋ง์ดˆ์กฐ์ง์˜ ์ธ์Šฌ๋ฆฐ ์ €ํ•ญ์„ฑ์ด๋ฉฐ, ์ธ์Šฌ๋ฆฐ์ €ํ•ญ์„ฑ์€ ์ฒด์กฐ์„ฑ์ค‘ ๋งˆ๋ฅธ ์ฒด์ค‘ ๋น„์œจ์ด ๊ฐ์†Œํ• ์ˆ˜๋ฅต ์ปค์ง€๊ณ  ๋˜ํ•œ ์‹คํ—˜๊ตฐ์—์„œ ์ผ์ •ํ•œ ์ •๋„๋กœ ๋”์šฑ ์ปค์ง€๋ฏ€๋กœ ์ธ์Š๋ฆฐ ์ €ํ•ญ์„ฑ์ด ๋งˆ๋ฅธ ์ฒด์ค‘ ์ฆ‰ ๊ทผ์œก์กฐ์ง์˜ ์–‘๊ณผ ์งˆ์  ๋ฌธ์ œ๋กœ ์ƒ๊ฐ๋œ๋‹ค. [์˜๋ฌธ] Ten offsprings of non-insulin-dependent diabetes mellitus patients and ten healthr men were included in this study which aimed to identify the early metabolic defects in the young first-degree relatives of non-insulin-dependent diabetes mellitus Patients, being generally accepted to be a high risk group for development of non-insulin-dependent diabetes mellitus. They were a11 third-decade male subjects and matched well with age and body mass indices. Both groups were not diffrent in anthroprmetric measurements(IBW, BMI and WIH ratio), daily calorie intakes and tota1 energy consumptions(total energy expenditure and physical activity). Oral glucose tolerance tests showed normal responses of plasma glucoee and C-peptide levels in both groups, which revealed normal ability of insulin secretion from endocrine pancreas. Although, oral glucose tolerance teats were normal mean levels of plasma glucose, C-peptide and insulin at 60 minutes were found to show sinificantly higher(p<0.05) in the study group(glucose 100 ยฑ 19 vs.77 ยฑ 19 mg/m1; C-peptide 5.47 ยฑ 1.7 vs.3.32 ยฑ 1.88 ng/m1;insulin 90.3 ยฑ 41.3 vs. 38.6 ยฑ 29.4 ฮผU/ml). This fact suggested that some degree of peripheral insulin resistance would be responsible for the 60 minute hyperinsulinemia in the offsprings of diabetic patients. To evaluate the insulin resistance in the young offspings of non-insulin-dependent diabetes mellitus patients, the well-known euํžˆcemic hyperinsulinemic damp study was performed. Tbey showed signifianty diminished rates of insulin-medisted glucose disposal compared to those of the control group(5.61ยฑ1.01 vs.8.77ยฑo.92mg/kg B.W./min, p<0,0l). Simple linear regression analysis showed an interesting correlation between peripheral glucose utilization rates and leon mass compositions measured by body composition analyser. The more the Bean mass percentage, the more peripheral glucose utilization rate with positive linear reationship(r**2=0.49,p<0.05). Furthermore, the offsprings of diabetic patients were constantly lower in insu1in-mediated glucose disposal rates than those of the normal control subjects which implied that lean mass was responsible for insulin resistance in quantity and quality. By the method of restriction fragment length polymorphism two polymorphic Kpn Isites of 6.5 kb and 5.8 kb were obseved without any new polymorphism for GLUT4 gene DNA in both groups as described previously. In addition, other two restriction endonucleases, Bam HI and Eco RI, were used but no polymorphism at GLUT4 gene locus was found. In conclusion this study support the genetic background in pathogenesis of nan-insulin -dependent diabetes mellitus and shows that the early metablic defect in the young offsprings is due to insulin resistance rather than pancreatic beta-cell dysfunction. The insulin resistance is in the negative linear relationship with lean mass composition and seems to arise from the skeleta1 muscle tissue.restrictio

    ์งˆ๋ณ‘ ์ง„๋‹จ ๋ฐ ์น˜๋ฃŒ๋ฅผ ์œ„ํ•œ ๋ถ€๋“œ๋Ÿฌ์šด ๋ฐ”์ด์˜ค์†Œ์ž๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ƒ์ฒด์‚ฝ์ž… ๊ฐ€๋Šฅํ•˜๋ฉฐ ์ตœ์†Œ์นจ์Šต์ ์ธ ์•ฝ๋ฌผ์ „๋‹ฌ ์‹œ์Šคํ…œ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€(์—๋„ˆ์ง€ํ™˜๊ฒฝ ํ™”ํ•™์œตํ•ฉ๊ธฐ์ˆ ์ „๊ณต), 2020. 8. ๊น€๋Œ€ํ˜•.๋ฐ”์ด์˜ค๋ฉ”๋””์ปฌ์†Œ์ž, ํŠนํžˆ ํŠน์ • ์ธ์ฒด ๋ถ€์œ„์— ์ ์šฉ๋˜๋Š” ์•ฝ๋ฌผ ์ „๋‹ฌ ์‹œ์Šคํ…œ์€ ๋‹ค์–‘ํ•œ ์ž„์ƒ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ๋ŒํŒŒ๊ตฌ๋ฅผ ์ œ์‹œํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ณผํ•™์ž๋“ค๊ณผ ์ž„์ƒ์˜๋“ค์—๊ฒŒ ์ƒ๋‹นํ•œ ๊ด€์‹ฌ์„ ๋Œ์—ˆ๋‹ค. ๊ธฐ์กด์˜ ์žฌ๋ฃŒ ๋ฐ ์†Œ์ž๋“ค์€ ๋‹จ๋‹จํ•˜๊ณ  ๋ถ€ํ”ผ๊ฐ€ ํฐ ํŠน์ง• ๋•Œ๋ฌธ์— ์†Œ์ž์™€ ์ธ์ฒด ์‚ฌ์ด์˜ ๊ธฐ๊ณ„์  ๋ถˆ์ผ์น˜๊ฐ€ ํ•ด๋‹น ์กฐ์ง์— ์‹ฌ๊ฐํ•œ ์†์ƒ์„ ์ผ์œผํ‚จ๋‹ค. ์ด์™€ ๊ด€๋ จํ•˜์—ฌ, ๋ถ€๋“œ๋Ÿฌ์šด ๊ธฐ๋Šฅ์„ฑ ์žฌ๋ฃŒ์™€ ์ƒˆ๋กœ์šด ์†Œ์ž ๋””์ž์ธ ์ „๋žต, ๊ทธ๋ฆฌ๊ณ  ์ž„์ƒ์ ์œผ๋กœ ๊ด€๋ จ๋œ ์‹œ์Šคํ…œ ์ˆ˜์ค€์˜ ์ ์šฉ์€ ์ด ๋ถ„์•ผ์˜ ๋น ๋ฅธ ์„ฑ์žฅ์„ ๊ฐ€์†ํ™”์‹œ์ผฐ๋‹ค. ์šฐ๋ฆฌ๋Š” ์งˆ๋ณ‘ ์ง„๋‹จ ๋ฐ ์น˜๋ฃŒ๋ฅผ ์œ„ํ•ด ๋ถ€๋“œ๋Ÿฌ์šด ๋ฐ”์ด์˜ค์ „์ž์†Œ์ž๋ฅผ ์‚ฌ์šฉํ•ด ์„ธ ๊ฐ€์ง€ ๋‹ค๋ฅธ ์œ ํ˜•์˜ ์ƒ์ฒด ์‚ฝ์ž…ํ˜• ๋ฐ ์ตœ์†Œ ์นจ์Šต์ ์ธ ์•ฝ๋ฌผ์ „๋‹ฌ ์‹œ์Šคํ…œ์„ ์†Œ๊ฐœํ•œ๋‹ค. ๋จผ์ €, ์›จ์–ด๋Ÿฌ๋ธ” ๊ธฐ๊ธฐ์™€ ๋ฌด์„ ์œผ๋กœ ์—ฐ๊ฒฐ๋œ ๋ถ€๋“œ๋Ÿฌ์šด ์†Œํ˜•ํ™”๋œ ์•ฝ๋ฌผ ์ „๋‹ฌ ์‚ฝ์ž…์†Œ์ž๋ฅผ ๊ฐœ๋ฐœํ–ˆ๋‹ค. ์•ฝ๋ฌผ ์ „๋‹ฌ ์‚ฝ์ž…์†Œ์ž๋Š” ์ „๊ธฐ ์ƒ๋ฆฌํ•™์  ์‹ ํ˜ธ๋ฅผ ์ง€์†์ ์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ณ  ์›จ์–ด๋Ÿฌ๋ธ” ๊ธฐ๊ธฐ๋กœ๋ถ€ํ„ฐ ๋ฌด์„  ์ „๋ ฅ ์ „์†ก์„ ํ†ตํ•ด ์ „์›์ด ๊ณต๊ธ‰๋œ๋‹ค. ํ”ผ๋ถ€์—์„œ์˜ ์ „๊ธฐ ์ƒ๋ฆฌํ•™์  ์‹ ํ˜ธ ๋ชจ๋‹ˆํ„ฐ๋ง์— ๊ธฐ๋ฐ˜ํ•œ ์•ฝ๋ฌผ์˜ ํ”ผํ•˜ ๋ฐฉ์ถœ์€ ๊ฐ„์งˆ ์ค‘์ฒฉ์ฆ๊ณผ ๊ฐ™์€ ๊ธด๊ธ‰ํ•œ ์˜๋ฃŒ ์ƒํ™ฉ์— ๋Œ€์ฒ˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‘˜์งธ, ํˆฌ๋ช…ํ•œ ๊ทธ๋ž˜ํ•€ ๋ฐ”์ด์˜ค์ „์ž์†Œ์ž์™€ ์น˜๋ฃŒ์šฉ ๋‚˜๋…ธ์ž…์ž๋ฅผ ํ†ตํ•œ ํ•œ ๋‹ค๊ธฐ๋Šฅ์„ฑ ๋‚ด์‹œ๊ฒฝ ๊ธฐ๋ฐ˜ ์ˆ˜์ˆ  ์‹œ์Šคํ…œ์ด ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ง„๋ณด๋œ ๋ฐ”์ด์˜ค์ „์ž์†Œ์ž ๋ฐ ๋‚˜๋…ธ์ž…์ž๋Š” ๋Œ€์žฅ์•” ์น˜๋ฃŒ๋ฅผ ์œ„ํ•œ ํ์‡„ ๋ฃจํ”„ ์†”๋ฃจ์…˜์˜ ๊ธฐ์ดˆ ๊ธฐ์ˆ ๋กœ์จ, ํ˜•๊ด‘ ๊ธฐ๋ฐ˜ ์•” ์กฐ์ง ๋งคํ•‘, ์ž„ํ”ผ๋˜์Šค ๋ฐ pH ์ธก์ •, ์ ‘์ด‰ ๋ฐ ์˜จ๋„ ๋ชจ๋‹ˆํ„ฐ๋ง, ๊ทธ๋ฆฌ๊ณ  ๊ณ ์ฃผํŒŒ ์ „๊ธฐ์†Œ์ž‘ ๋ฐ ๊ตญ์†Œ์ ์ธ ๊ด‘์—ญ๋™ ์น˜๋ฃŒ์™€ ํ•ญ์•”์š”๋ฒ•์„ ์ข…ํ•ฉ์ ์œผ๋กœ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ์…‹์งธ, ์ตœ์†Œ ์นจ์Šต์ ์ธ ์•” ์น˜๋ฃŒ๋ฅผ ์œ„ํ•ด ๋งˆ์ดํฌ๋กœ๋‹ˆ๋“ค์ด ํ†ตํ•ฉ๋œ ๋ฐ”์ด์˜ค์ „์ž์†Œ์ž๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์•”์„ ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ์น˜๋ฃŒ์šฉ ๋‚˜๋…ธ์ž…์ž์™€ ๊ณ ์—๋„ˆ์ง€ ๊ด‘์ž์˜ ๊ตญ์†Œ์ ์ธ ์ „๋‹ฌ ๋ฐฉ๋ฒ•์ด ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ์น˜๋ฃŒ์šฉ ๋‚˜๋…ธ์ž…์ž๋Š” ์ƒํก์ˆ˜์„ฑ ๋งˆ์ดํฌ๋กœ๋‹ˆ๋“ค์— ์˜ํ•ด ๊ตญ์†Œ์ ์œผ๋กœ ์•”์กฐ์ง์„ ๋ชฉํ‘œ๋กœ ์ „๋‹ฌ๋œ๋‹ค. ๊ทธ ํ›„, ๋น›์„ ์ „๋‹ฌํ•˜๋Š” ๋งˆ์ดํฌ๋กœ๋‹ˆ๋“ค์€ ๋ฐ”์ด์˜ค์ „์ž์†Œ์ž๋กœ๋ถ€ํ„ฐ ๋‚˜์˜ค๋Š” ๊ณ ์—๋„ˆ์ง€ ๊ด‘์ž๋ฅผ ์ „๋‹ฌํ•œ๋‹ค. ์ด ๊ณ ์—๋„ˆ์ง€ ๊ด‘์ž๋Š” ๋ชฉํ‘œ ์•”์กฐ์ง์—์„œ ๊ด‘์—ญ๋™ ์น˜๋ฃŒ ๋ฐ ํ•ญ์•”์น˜๋ฃŒ๋ฅผ ์‹คํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ๋‚˜๋…ธ์ž…์ž๋ฅผ ๊ตญ์†Œ์ ์œผ๋กœ ํ™œ์„ฑํ™”์‹œํ‚จ๋‹ค.Biomedical electronic devices, especially for drug delivery system applied for specific human body parts have attracted considerable attention among scientists and clinicians because they present significant breakthroughs to solve various clinical issues. Because, conventional materials and devices are rigid and bulky feature, mechanical mismatch between devices and human body causes significant damages on tissues. In this regard, recent innovations in soft functional materials, novel device design strategies, and clinically relevant system-level applications have accelerated the rapid growth in this research field. Here, we describe three types of implantable and minimally-invasive drug delivery system using soft bioelectronics for disease diagnosis and treatment. First, a soft miniaturized drug delivery implant (SMDDI) wirelessly interconnected with wearables is fabricated. The SMDDI is wirelessly powered and controlled by wearables that continuously monitor electrophysiological signals and trigger the drug-release on-demand through the wireless power transmission. Subcutaneous release of pharmaceuticals from SMDDI based on epidermal electrophysiology monitoring could treat urgent medical situations such as status epilepticus. Second, a multifunctional endoscope-based surgical system integrating transparent graphene bio-electronics with theranostic NPs is developed. These advanced electronics and nanoparticles enable optical fluorescence-based imaging, electrical impedance and pH detecting, contact/temperature monitoring, radio frequency ablation, and localized photo/chemotherapy for a closed-loop system on colon cancer treatment. Third, a localized delivery system of theranostic nanoparticles (NPs) and high-energy photons to target tumors by using microneedle-integrated bioelectronics for minimally-invasive cancer treatment is developed. Theranostic NPs are locally delivered to target tumor by bioresorbable microneedles. Then, light-guiding/-spreading microneedles deliver high-energy photons generated by the bioelectronics. The high-energy photons locally activate the NPs to induce the photodynamic-/chemo-therapy in the target tumor.Chapter 1. Recent advances in wearable, implantable, and minimally-invasive bioelectronics using functional nanomaterials 1 1.1 Introduction 1 1.2 Nanomaterials as a functional basis of soft electronic devices 3 1.3 Soft bio-integrated electronics based on functional nanomaterials 7 1.4 Wearable systems using soft bioelectronics 9 1.5 Implantable devices based on soft bioelectronics 13 1.6 Minimally-invasive surgical tools based on soft bioelectronics 16 1.7 Conclusion 20 References 21 Chapter 2. Soft miniaturized drug delivery implant wirelessly powered and controlled by wearables 32 2.1 Introduction 32 2.2 Experimental section 36 2.3 Results and discussion 39 2.4 Conclusion 55 References 56 Chapter 3. Localized delivery of theranostic nanoparticles and high-energy photons using microneedle-integrated bioelectronics for minimally-invasive cancer treatment 59 3.1 Introduction 59 3.2 Experimental section 63 3.3 Results and discussion 67 3.4 Conclusion 76 References 77 Chapter 4. Smart endoscope system integrated with transparent bio-electronics and theranostic nanoparticles for colon cancer treatment 81 4.1 Introduction 81 4.2 Experimental section 83 4.3 Results and discussion 86 4.4 Conclusion 104 References 105Docto
    • โ€ฆ
    corecore