138 research outputs found
The Inhibitory Effects of Forsythia Koreana Extracts on the Metastatic Ability of Breast Cancer Cells and Bone Resorption by Osteoclasts
BACKGROUND: Breast cancer is the most common malignant disease in women. The patients with advanced breast cancer develop metastasis to bone. Bone metastasis and skeletal-related events by breast cancer are frequently associated with the invasiveness of breast cancer cells and osteoclasts-mediated bone resorption. Forsythia koreana is used in oriental traditional medicine to treat asthma, atopy, and allergic diseases. The aim of this study was to evaluate the inhibitory effects of F. koreana extracts on the invasion of breast cancer cells and bone resorption by osteoclasts.
METHODS: Cell viability was measured by an MTT assay and the migration and invasion of MDA-MB-231 cells were detected by a Boyden chamber assay. The formation of osteoclasts and pit was detected using tartrate-resistant acid phosphatase staining and calcium phosphate-coated plates, respectively. The activities of matrix metalloproteinases (MMPs) and cathepsin K were evaluated by gelatin zymography and a cathepsin K detection kit.
RESULTS: The fruit and leaf extracts of F. koreana significantly inhibited the invasion of MDA-MB-231 cells at noncytotoxic concentrations. The fruit extract of F. koreana reduced the transforming growth factor ฮฒ1-induced migration, invasion and MMPs activities of MDA-MB-231 cells. In addition, the fruit, branch, and leaf extracts of F. koreana also inhibited the receptor activator of nuclear factor kappa-B ligand-induced osteoclast formation and osteoclast-mediated bone-resorbing activity by reducing the activities of MMPs and cathepsin K.
CONCLUSIONS: The extracts of F. koreana may possess the potential to inhibit the breast cancer-induced bone destruction through blocking invasion of breast cancer cells, osteoclastogenesis, and the activity of mature osteoclasts.ope
Liensinine and Nuciferine, Bioactive Components of Nelumbo nucifera, Inhibit the Growth of Breast Cancer Cells and Breast Cancer-Associated Bone Loss
Once breast cancer cells grow aggressively and become lodged in the skeleton through migration and invasion, they interact with bone microenvironment and accelerate much more tumor growth and bone destruction. We investigated whether liensinine and nuciferine, major active components in Nelumbo nucifera (lotus), could prevent breast cancer cell-mediated bone destruction. Liensinine and nuciferine inhibited the growth of MDA-MB-231 and MCF-7 human breast cancer cells by inducing apoptosis and inhibiting proliferation via cell cycle arrest. Liensinine treatment led to the increased Bax/Bcl-2 ratio, activation of caspase-3, and subsequent cleavage of PARP. Liensinine also displayed significant inhibition on the migration and invasion of both MDA-MB-231 and MCF-7 human breast cancer cells compared with nuciferine. In addition, liensinine and nuciferine inhibited the receptor activator of nuclear factor kappa-B ligand- (RANKL-) induced osteoclast differentiation in mouse bone marrow macrophage cells and mature osteoclast-mediated bone resorption. Furthermore, oral administration of liensinine reduced the osteolysis in nude mice with intratibial injection of MDA-MB-231 cells. Collectively, liensinine and nuciferine may be promising candidates for preventing and treating breast cancer bone metastasis and the resulting osteolytic bone loss by targeting both cancer cells and osteoclasts. Liensinine has more potent anticancer and antibone resorptive activities than nuciferine.ope
Loss of RUNX3 expression inhibits bone invasion of oral squamous cell carcinoma
High recurrence and lower survival rates in patients with oral squamous cell carcinoma (OSCC) are associated with its bone invasion. We identified the oncogenic role of RUNX3 during bone invasion by OSCC. Tumor growth and the generation of osteolytic lesions were significantly inhibited in mice that were subcutaneously inoculated with RUNX3-knockdown human OSCC cells. RUNX3 knockdown enhanced TGF-ฮฒ-induced growth arrest and inhibited OSCC cell migration and invasion in the absence or presence of transforming growth factor-ฮฒ (TGF-ฮฒ), a major growth factor abundant in the bone microenvironment. RUNX3 knockdown induced cell cycle arrest at the G1 and G2 phases and promoted G2 arrest by TGF-ฮฒ in Ca9.22 OSCC cells. RUNX3 knockdown also inhibited both the basal and TGF-ฮฒ-induced epithelial-to-mesenchymal transition by increasing E-cadherin expression and suppressing the nuclear translocation of ฮฒ-catenin. In addition, the expression and TGF-ฮฒ-mediated induction of parathyroid hormone-related protein (PTHrP), one of key osteolytic factors, was blocked in RUNX3-knockdown OSCC cells. Furthermore, treating human osteoblastic cells with conditioned medium derived from RUNX3-knockdown OSCC cells reduced the receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoprotegerin ratio compared with treatment with conditioned medium from RUNX3-expressing cells. These findings indicate that RUNX3 expression in OSCC cells contributes to their bone invasion and the resulting osteolysis by inducing their malignant behaviors and production of osteolytic factors. RUNX3 alone or in combination with TGF-ฮฒ and PTHrP may be a useful predictive biomarker and therapeutic target for bone invasion by oral cancer.ope
Validating of the pre-clinical mouse model for metastatic breast cancer to the mandible
Metastatic breast carcinoma has a great tendency to spread to the mandible. It is concomitantly associated with bone destruction, food intake disorder, and a poorer prognosis. Appropriate animal models need to be developed for a better understanding of the mechanisms underlying the metastatic process of breast cancer cells to mandible and to test the effects of potential lead compounds. Here, we assessed the metastasis model of intracardiac injection using luciferase-transfected metastatic breast cancer cells (MDA-MB-231Luc+) by determining the incidences of metastasis, mCT images, and histopathological results. A high bioluminescence signal mainly detected mandibular lesions with less frequent distal femora and proximal tibiae lesions. Extensive mandibular bone destruction occurred in nude mice grafted with metastatic breast cancer cells. This type of animal model might be a useful tool in assessing therapeutic implications and the efficacy of anti-cancer drugs for osteolytic cancers.ope
Artemisinin-Daumone Hybrid Inhibits Cancer Cell-Mediated Osteolysis by Targeting Cancer Cells and Osteoclasts
BACKGROUND/AIMS:
Bone metastasis of cancer cells decreases patient survival and quality of life. Hybridization via the covalent coupling of two bioactive natural products is a useful strategy for developing more potent anticancer agents by enhancing their bioavailability and avoiding drug resistance.
METHODS:
The in vivo activities of artemisinin-daumone hybrid 15 (ARTD) were estimated in cancer cell-inoculated mice and ovariectomized mice. The viability, migration, and invasion of cancer cells were measured via MTT, wound-healing, and transwell invasion assays. ARTD-regulated transcription factors were detected with an RT2 profiler PCR array kit and Western blotting. Osteoclastogenesis and osteoclast activity were detected with tartrate-resistant acid phosphatase staining, a pit formation assay, gelatin zymography, and a cathepsin K ELISA assay.
RESULTS:
ARTD blocked cancer-associated osteolysis more potently than artemisinin in mice with intratibially inoculated breast cancer or lung cancer cells. ARTD inhibited the viability, migration, and invasion of breast and lung cancer cells in the absence or presence of transforming growth factor-ฮฒ1. ARTD treatment induced the expression of tumor suppressive activating transcription factor 3 and inhibited oncogenic E2F transcription factor 1 expression at the mRNA and protein levels. ARTD inhibited receptor activator of nuclear factor kappa-B ligand-induced osteoclast formation and bone resorbing activity by reducing the secreted levels of matrix metalloproteinase-9 and cathepsin K. Furthermore, ARTD prevented estrogen deficiency-induced bone loss in ovariectomized mice.
CONCLUSION:
ARTD may be a promising candidate for inhibiting cancer-induced bone destruction. The application of ARTD may be extended to patients with chemotherapy-induced ovarian failure or postmenopausal osteoporosis.ope
Isoliquiritigenin Inhibits Metastatic Breast Cancer Cell-induced Receptor Activator of Nuclear Factor Kappa-B Ligand/Osteoprotegerin Ratio in Human Osteoblastic Cells
Bone destruction induced by the metastasis of breast cancer cells is a frequent complication that is caused by the interaction between cancer cells and bone cells. Receptor activator of nuclear factor kappa-B ligand (RANKL) and the endogenous soluble RANKL inhibitor, osteoprotegerin (OPG), directly play critical roles in the differentiation, activity, and survival of osteoclasts. In patients with bone metastases, osteoclastic bone resorption promotes the majority of skeletal-related events and propagates bone metastases. Therefore, blocking osteoclast activity and differentiation via RANKL inhibition can be a promising therapeutic approach for cancer-associated bone diseases. We investigated the potential of isoliquiritigenin (ISL), which has anti-proliferative, anti-angiogenic, and anti-invasive effects, as a preventive and therapeutic agent for breast cancer cell-induced bone destruction. ISL at non-toxicity concentrations significantly inhibited the RANKL/OPG ratio by reducing the production of RANKL and restoring OPG production to control levels in hFOB1.19 cells stimulated with conditioned medium (CM) of MDA-MB-231 cells. In addition, ISL reduced the expression of cyclooxygenase-2 in hFOB1.19 cells stimulated by CM of MDA-MB-231 cells. Therefore, ISL may have inhibitory potential on breast cancer-induced bone destruction.ope
Protective Effect of White-fleshed Peach (Prunus persica (L.) Batsch) on Chronic Nicotine-induced Toxicity
BACKGROUND: Nicotine is a major toxic component of tobacco smoke and has been recognized as a risk factor to induce oxidative tissue damage, which is a precursor to cardiovascular diseases, lung-related diseases, and cancers. Peaches (Prunus persica) have been used for the treatment of degenerative disorders, such as hypermenorrhea, dysmenorrhea, and infertility in Asian countries. In this study, we investigated the effects of white-fleshed peach on the excretion of nicotine metabolites and 1-hydroxypyrene in smokers and chronic nicotine-induced tissue damages in mice.
METHODS: The concentrations of cotinine and 1-hydroxypyrene were measured in urine of smokers before or after intake of white-fleshed peaches. In addition, ICR mice were injected with nicotine (5 mg/kg body weight) and then orally administered with white-fleshed peach extracts (WFPE) (250 or 500 mg/kg body weight) for 36 days. The oxidative stress parameters and the activities of antioxidant enzymes were measured in liver and kidney tissues. Also, histological changes and nitrotyrosine expression were assessed.
RESULTS: Intake of white-fleshed peaches increased the urinary concentration of nicotine metabolites and 1-hydroxypyrene in 91.67% and 83.33% of smokers, respectively. WFPE decreased the malondialdehyde levels and recovered the activities of antioxidant enzymes in nicotine-injected mice. In addition, WFPE inhibited nitrotyrosine expression and inflammatory responses in the liver, kidney, and lung tissues of nicotine-treated mice.
CONCLUSIONS: White-fleshed peaches may increase the metabolism of toxic components in tobacco smoke in smokers and protect normal tissues against nicotine toxicity in mice. Therefore, supplementation of white-fleshed peaches might be beneficial to smokers.ope
Loss of RUNX3 expression promotes cancer-associated bone destruction by regulating CCL5, CCL19 and CXCL11 in non-small cell lung cancer
Non-small cell lung cancer (NSCLC) frequently metastasizes to bone, which is associated with significant morbidity and a dismal prognosis. RUNX3 functions as a tumour suppressor in lung cancer and loss of expression occurs more frequently in invasive lung adenocarcinoma than in pre-invasive lesions. Here, we show that RUNX3 and RUNX3-regulated chemokines are linked to NSCLC-mediated bone resorption. Notably, the receptor activator of nuclear factor-ฮบB ligand (RANKL)/osteoprotegerin (OPG) ratio, an index of osteoclastogenic stimulation, was significantly increased in human osteoblastic cells treated with conditioned media derived from RUNX3-knockdown NSCLC cells. We aimed to identify RUNX3-regulated factors that modify the osteoblastic RANKL/OPG ratio and found that RUNX3 knockdown led to CCL5 up-regulation and down-regulation of CCL19 and CXCL11 in NSCLC cells. Tumour size was noticeably increased and more severe osteolytic lesions were induced in the calvaria and tibiae of mice that received RUNX3-knockdown cells. In response to RUNX3 knockdown, serum and tissue levels of CCL5 increased, whereas CCL19 and CXCL11 decreased. Furthermore, CCL5 increased the proliferation, migration, and invasion of lung cancer cells in a dose-dependent manner; however, CCL19 and CXCL11 did not show any significant effects. The RANKL/OPG ratio in osteoblastic cells was increased by CCL5 but reduced by CCL19 and CXCL11. CCL5 promoted osteoclast differentiation, but CCL19 and CXCL11 reduced osteoclastogenesis in RANKL-treated bone marrow macrophages. These findings suggest that RUNX3 and related chemokines are useful markers for the prediction and/or treatment of NSCLC-induced bone destruction.ope
Platelet CLEC2-Podoplanin Axis as a Promising Target for Oral Cancer Treatment
Cancer tissues are not just simple masses of malignant cells, but rather complex and heterogeneous collections of cellular and even non-cellular components, such as endothelial cells, stromal cells, immune cells, and collagens, referred to as tumor microenvironment (TME). These multiple players in the TME develop dynamic interactions with each other, which determines the characteristics of the tumor. Platelets are the smallest cells in the bloodstream and primarily regulate blood coagulation and hemostasis. Notably, cancer patients often show thrombocytosis, a status of an increased platelet number in the bloodstream, as well as the platelet infiltration into the tumor stroma, which contributes to cancer promotion and progression. Thus, platelets function as one of the important stromal components in the TME, emerging as a promising chemotherapeutic target. However, the use of traditional antiplatelet agents, such as aspirin, has limitations mainly due to increased bleeding complications. This requires to implement new strategies to target platelets for anti-cancer effects. In oral squamous cell carcinoma (OSCC) patients, both high platelet counts and low tumor-stromal ratio (high stroma) are strongly correlated with increased metastasis and poor prognosis. OSCC tends to invade adjacent tissues and bones and spread to the lymph nodes for distant metastasis, which is a huge hurdle for OSCC treatment in spite of relatively easy access for visual examination of precancerous lesions in the oral cavity. Therefore, locoregional control of the primary tumor is crucial for OSCC treatment. Similar to thrombocytosis, higher expression of podoplanin (PDPN) has been suggested as a predictive marker for higher frequency of lymph node metastasis of OSCC. Cumulative evidence supports that platelets can directly interact with PDPN-expressing cancer cells via C-type lectin-like receptor 2 (CLEC2), contributing to cancer cell invasion and metastasis. Thus, the platelet CLEC2-PDPN axis could be a pinpoint target to inhibit interaction between platelets and OSCC, avoiding undesirable side effects. Here, we will review the role of platelets in cancer, particularly focusing on CLEC2-PDPN interaction, and will assess their potentials as therapeutic targets for OSCC treatment.ope
Artemisia annua extract prevents ovariectomy-induced bone loss by blocking receptor activator of nuclear factor kappa-B ligand-induced differentiation of osteoclasts
The activities of osteoclasts and osteoblasts are balanced to maintain normal bone density. Many pathological conditions cause osteoclastic bone resorption in excess of osteoblastic bone formation, resulting in osteoporosis. We found that oral administration of Artemisia annua ethanol extract (AaE) or major components, artemisinin and arteannuin B, to ovariectomized (OVX) mice prevented bone loss, as verified by examining three-dimensional images and bone morphometric parameters derived from microcomputed tomography analysis, as well as serum levels of bone turnover markers and proinflammatory cytokines. The administered doses were not toxic to the liver or kidney and showed promising effects that were comparable to those of 17ฮฒ-estradiol treatment. At non-cytotoxic concentrations, AaE and active components, artemisinin, artemisinic acid, and arteannuin B, potently inhibited receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis and the formation of osteoclast-mediated resorption pits. Furthermore, AaE, artemisinin, and arteannuin B remarkably reduced the expression of the c-Fos and NFATc1 transcription factors, which play critical roles in RANKL-induced osteoclast differentiation. Taken together, the in vivo anti-osteoporotic activity of AaE may be derived from the anti-osteoclastic and anti-bone resorptive activities of its active components. AaE has beneficial applications for the prevention and inhibition of osteoporosis and osteoclast-mediated bone diseases.ope
- โฆ