235 research outputs found

    DNA ์†์ƒ ๋ฐ˜์‘ ์œ ์ „์ž์˜ ์ „์‚ฌ์ข…๊ฒฐ์—์„œ RPRD1A์™€ ํžˆ์Šคํ†ค H3 45๋ฒˆ Threonine์ž”๊ธฐ ์ธ์‚ฐํ™”์™€์˜ ๊ด€๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ๋ถ„์ž์˜ํ•™ ๋ฐ ๋ฐ”์ด์˜ค์ œ์•ฝ ์ „๊ณต, 2017. 2. ์œคํ™๋•.Core histones undergo diverse post-translational modifications to regulate the transcription process. On our previous report, we showed that AKT1 phosphorylates 45th threonine of histone H3 (H3T45) under DNA damage conditions. It enhances transcription by facilitating transcriptional termination. However, the precise mechanism of phosphorylated H3T45 (p-H3T45) -enhanced transcriptional termination is not yet understood. In this study, we show that human orthologs of yeast transcription termination factor Rtt103, RPRD1A and RPRD1B, interact with AKT1. RPRD1A, not RPRD1B, harbors well-conserved AKT phosphorylation site on its carboxy-terminal coiled-coil structure (Serine 285). Under the DNA damage conditions, RPRD1A knockdown had no effect on H3T45 phosphorylation, but caused impaired CDKN1A transcriptional induction. AKT1 mediated phosphorylation of H3T45 and RPRD1A-S285 both increased their binding affinity. Finally, S285A mutation impaired RNA polymerase II (Pol II) dissociation from the chromatin, resulting improper transcriptional termination and reduced transcription efficiency. Taken together, we suggest a novel mechanistic insight that RPRD1A transmits H3T45 phosphorylation signal to transcriptional termination.I. INTRODUCTION 1 1-1. C-terminal domain of RNA polymerase II and transcrip-tional termination 2 1-2. Function of RPRDs (regulation of nuclear pre-mRNA do-main-containing protein) in transcriptional termination and malignancy 6 1-3. AKT activation under the DNA damage conditions and contribution to transcriptional termination 10 II. MATERIALS AND METHODS 14 2-1. Cell culture and transient expression 15 2-2. DNA constructs and purification of recombinant proteins 15 2-3. Antibodies 16 2-4. Lentiviral shRNA-mediated knockdown of RPRD1A 16 2-5. AKT kinase assay 17 2-6. Western blot assay 17 2-7. ChIP (Chromatin Immunoprecipitation) assay 18 2-8. qRT โ€“PCR (Quantitative real-time PCR) analysis of relative mRNA levels and ChIP products 19 2-9. Statistics 19 III. RESULTS 22 3-1. AKT interacts with RPRD1A and phosphorylates 285th Serine 23 3-2. Phosphorylated 285thserine of RPRD1A induces CDKN1A transcription under the DNA damage 32 3-3. Phosphorylation of RPRD1A S285 and histone H3-T45 by AKT1 enhances binding affinity to each other 39 3-4. Ser285 of RPRD1A is critical to transcription termination complex formation at TTS 44 IV. DISCUSSION 47 V. REFERENCES 51 โ…ฅ. ABSTRACT IN KOREAN 59Maste

    ๋™์  ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ™œ์šฉํ•œ LNG-FSRU ํƒ‘์‚ฌ์ด๋“œ ๊ณต์ •์˜ ์„ค๊ณ„ ๋ฐ ์šด์ „์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2015. 2. ํ•œ์ข…ํ›ˆ.์ตœ๊ทผ ์ฆ๊ฐ€ํ•˜๋Š” ์ฒœ์—ฐ๊ฐ€์Šค์˜ ์ˆ˜์š”์— ๋งž์ถฐ ์•กํ™” ์ฒœ์—ฐ๊ฐ€์Šค(LNG) ๊ณต๊ธ‰ ์‹œ์„ค์˜ ์ˆ˜์š”๊ฐ€ ๋†’์•„์ง€๊ณ  ์žˆ์œผ๋ฉฐ ํŠนํžˆ ๊ธฐ์กด์˜ ์œก์ƒ ๊ณต๊ธ‰ ์‹œ์„ค๋ณด๋‹ค ๊ณต์‚ฌ๊ธฐ๊ฐ„, ๋น„์šฉ ์ธก๋ฉด์—์„œ ์œ ๋ฆฌํ•œ ํ•ด์ƒ ๋ถ€์œ ์‹ ์ €์žฅ ๋ฐ ๊ธฐํ™” ์„ค๋น„(FSRU)์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ํ™•๋Œ€๋˜๊ณ  ์žˆ๋‹ค. LNG-FSRU๋Š” ๊ทธ ์„ค๊ณ„ ๋ฐฉ๋ฒ•์ด ์œก์ƒ ์ฒœ์—ฐ๊ฐ€์Šค ํ„ฐ๋ฏธ๋„์ด๋‚˜ ์ฒœ์—ฐ๊ฐ€์Šค ์ˆ˜์†ก์„ ์˜ ๊ฒฝ์šฐ์™€ ์œ ์‚ฌํ•˜์ง€๋งŒ ๊ธฐ์กด ๊ณต์ • ์„ค๊ณ„์—์„œ ๋‹ค๋ฃจ์ง€ ์•Š๋˜ ํ•ด์–‘ ์ƒํ™ฉ์„ ์„ค๊ณ„์— ๋ฐ˜์˜ํ•˜์—ฌ์•ผ ํ•œ๋‹ค. ๋˜ํ•œ LNG-FSRU์˜ ๊ณต์ • ๋ฐ ์šด์ „ ์ ˆ์ฐจ์˜ ์„ค๊ณ„์™€ ์•ˆ์ „ํ•œ ์šด์ „์„ ์œ„ํ•ด์„œ๋Š” ๋†’์€ ์ •ํ™•์„ฑ์„ ๊ฐ€์ง„ ๋™์  ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ธ์ด ํ•„์š”ํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ถฉ๋ถ„ํ•œ ์ˆ˜์™€ ์ข…๋ฅ˜์˜ ์„ผ์„œ ์„ค์น˜๊ฐ€ ์š”๊ตฌ๋œ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๋™์  ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ™œ์šฉํ•œ LNG-FSRU์˜ ํƒ‘์‚ฌ์ด๋“œ ๊ณต์ •์˜ ์„ค๊ณ„์™€ ์šด์ „์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ๋‹ค๋ฃจ์—ˆ๋‹ค. ๋จผ์ € ๊ณต์ • ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด LNG-FSRU์˜ ๊ณต์ •์— ๋Œ€ํ•œ ํ•ด์–‘ ํ™˜๊ฒฝ์˜ ์˜ํ–ฅ์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€์œผ๋ฉฐ ๋˜ํ•œ LNG-FSRU์˜ ๊ณต์ • ๋ฐ ์šด์ „ ์ ˆ์ฐจ ์„ค๊ณ„๋ฅผ ์œ„ํ•œ ์ •ํ™•ํ•œ ๋™์  ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ชจ๋ธ, ๊ทธ ์ค‘์—์„œ๋„ ๊ณต์ •์˜ ํ•ต์‹ฌ์ด ๋˜๋Š” ์žฌ์•กํ™”๊ธฐ์— ๋Œ€ํ•œ ์ƒ์„ธ ๋ชจ์‚ฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์•„์šธ๋Ÿฌ LNG-FSRU ๋ฐฐ๊ด€ ๋‚ด์˜ ์ž‘์—…์ž๊ฐ€ ์•Œ๊ณ  ์‹ถ์€ ์–ด๋–ค ์ง€์ ์— ๋Œ€ํ•ด์„œ๋„ ๊ฐ’์„ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋Š” ๋ณ€์ˆ˜ ์ž๋™ ์˜ˆ์ธก ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์„ธ ๊ฐœ์˜ ์ฃผ์š”ํ•œ ๋ถ€๋ถ„์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ฒซ์งธ, ํ•ด์–‘ ํ™˜๊ฒฝ์ด ๊ณต์ •์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋Š” ์š”์ธ์„ ์œ ๋™ํ˜„์ƒ์˜ ์žฅ์น˜ ๋‚ด ์œ ์ž…, ํ”Œ๋žœํŠธ ์„ค์น˜ ๊ฐ€๋Šฅ ์˜์—ญ ์ œํ•œ, ๊ทธ๋ฆฌ๊ณ  ์žฅ์น˜ ๋ฌด๊ฒŒ์— ๋Œ€ํ•œ ๊ณ ๋ ค ์„ธ ๊ฐ€์ง€๋กœ ๊ตฌ๋ถ„ํ•˜์—ฌ ๊ฐ๊ฐ์˜ ์š”์ธ๋“ค์ด ๊ณต์ • ์„ค๊ณ„์— ์–ผ๋งˆ๋‚˜ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ง€๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด ๊ฒฐ๊ณผ๋ฅผ ํ† ๋Œ€๋กœ LNG-FSRU ํƒ‘์‚ฌ์ด๋“œ์˜ ์ตœ์  ๊ณต์ • ์„ค๊ณ„๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋‘˜์งธ, ์„ค๊ณ„ํ•œ LNG-FSRU์˜ ๊ณต์ •์„ ๋ฐ”ํƒ•์œผ๋กœ ๋™์  ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ํŠนํžˆ LNG-FSRU ๊ณต์ • ๋‚ด์—์„œ ๊ฐ€์žฅ ๋ชจ์‚ฌ๊ฐ€ ๋‚œํ•ดํ•œ ์ฆ๋ฐœ๊ฐ€์Šค ์žฌ์•กํ™”๊ธฐ์— ๋Œ€ํ•œ ์ƒ์„ธ ๋ชจ์‚ฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์—ฌ ๊ธฐ์กด ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์‚ฌ๋ก€๋ณด๋‹ค ๋†’์€ ์ •ํ™•๋„๋กœ ์žฌ์•กํ™”๊ธฐ์˜ ์šด์ „์„ ๋ชจ์‚ฌํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ LNG-FSRU์˜ ๋ฐฐ๊ด€์„ ๋Œ€์ƒ์œผ๋กœ ์„ผ์„œ๊ฐ€ ์—†๋Š” ์–ด๋Š ์ง€์ ์„ ์„ ํƒํ•˜๋”๋ผ๋„ ํ•ด๋‹น ์ง€์ ์˜ ๊ณต์ • ๋ณ€์ˆ˜๋ฅผ ์ž๋™ํ™”๋œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ๊ฐ€์žฅ ๋น ๋ฅด๊ฒŒ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœ๋œ ๋ฐฉ๋ฒ•๋ก ์„ ํ†ตํ•˜์—ฌ ๋ณ€์ˆ˜ ์˜ˆ์ธก์— ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„์„ ๊ธฐ์กด๋ณด๋‹ค 1/10 ์ดํ•˜๋กœ ์ค„์ผ ์ˆ˜ ์žˆ์—ˆ๋‹ค.Abstract Contents List of Figures List of Tables Chapter 1 : Introduction 1.1. Research motivation 1.2. Research objectives 1.3. Outline of the thesis Chapter 2 : Topside process design of LNG-FSRU 2.1. Introduction 2.2. Theoretical backgrounds 2.2.1. LNG-FSRU 2.2.2. Traditional process design procedures 2.2.3. Process design for offshore plant topside 2.3. Basis of design for LNG-FSRU 2.3.1. Design specification 2.3.2. Target specification 2.4. LNG-FSRU Topside process design 2.4.1. Basic process scheme 2.4.2. Detailed design of topside process 2.4.3. Vaporizator selection 2.4.4. Heat and material balance sheet 2.5. Result and discussion Chapter 3 : Dynamic Simulation of LNG-FSRU topside process 3.1. Introduction 3.2. Theoretical backgrounds 3.2.1. BOG Recondenser 3.2.2. Prior researches about recondenser modeling 3.3. Proposed modeling methodology 3.3.1. General dynamic simulation of a BOG recondenser 3.3.2. Building the flash ratio function 3.4. Case study : Data preprocessing 3.4.1. Noise filtering 3.4.2. Raw data selection 3.5. Case study : Advanced dynamic modeling for BOG recondenser 3.5.1. Model building 3.5.2. Model validation 3.5.3. HYSYS non-equilibrium solving method 3.6. Result and discussion Chapter 4 : Automatic simulation-based soft sensor generation for LNG-FSRU 4.1. Introduction 4.2. LNG terminal 4.3. Methodology 4.3.1. Quantization of target location information 4.3.2. Model boundary selection 4.3.3. Degree of freedom calculation for the LNG pipeline 4.3.4. Simulation of the target model with minimizing error 4.4. Case study 4.4.1. Case study 1 4.4.2. Case study 2 4.5. Result and discussion Chapter 5 : Conclusion and Future Works 5.1. Conclusion 5.2. Future worksDocto

    ์ˆœ์ˆ˜ ๋ณ€ํ˜•์†๋„ ํšจ๊ณผ๋ฅผ ๊ณ ๋ คํ•œ ์ฝ˜ํฌ๋ฆฌํŠธ ์••์ถ•๊ฐ•๋„ ๋™์ ์ฆ๊ฐ€๊ณ„์ˆ˜

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๊ณต๊ณผ๋Œ€ํ•™ ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€, 2017. 8. ์กฐ์žฌ์—ด.์ฐจ๋Ÿ‰, ์„ ๋ฐ•, ํ•ญ๊ณต๊ธฐ ์ถฉ๋Œ, ํญ๋ฐœ, ์ง€์ง„, ์“ฐ๋‚˜๋ฏธ ๋“ฑ ๊ทน๋‹จ์ƒํ™ฉ ํ•˜์˜ ๊ตฌ์กฐ๋ฌผ์€ ์ผ๋ฐ˜์ ์œผ๋กœ ์ •์ ์ƒํƒœ์— ๋น„ํ•ด ๋†’์€ ๋ณ€ํ˜•์†๋„๋กœ ํ•˜์ค‘์„ ๋ฐ›๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๊ทน๋‹จ์ƒํ™ฉ ํ•˜ ์ฝ˜ํฌ๋ฆฌํŠธ ๊ตฌ์กฐ๋ฌผ์˜ ๊ฒฝ์ œ์ ์ธ ์„ค๊ณ„์™€ ์ •ํ™•ํ•œ ๊ฑฐ๋™ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด์„œ๋Š” ์ฝ˜ํฌ๋ฆฌํŠธ์˜ ๋™์  ์žฌ๋ฃŒํŠน์„ฑ์„ ๊ณ ๋ คํ•ด์•ผ๋งŒ ํ•œ๋‹ค. ํ•œํŽธ, ์ฝ˜ํฌ๋ฆฌํŠธ๋Š” ๋ณ€ํ˜•์†๋„ ์˜์กดํŠน์„ฑ์„ ๊ฐ€์ง„ ์žฌ๋ฃŒ๋กœ์„œ, ๋ณ€ํ˜•๋ฅ  ์†๋„์— ๋”ฐ๋ผ ์••์ถ•๊ฐ•๋„, ์ธ์žฅ๊ฐ•๋„, ์ž„๊ณ„๋ณ€ํ˜•๋ฅ  ๋“ฑ ์žฌ๋ฃŒํŠน์„ฑ์ด ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ณ€ํ™”ํ•œ๋‹ค. ํŠนํžˆ, ์ฝ˜ํฌ๋ฆฌํŠธ์˜ ๋™์ ๊ฐ•๋„๋Š” ๋ณ€ํ˜•๋ฅ  ์†๋„๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์ฆ์ง„๋˜๋Š”๋ฐ, ์ด๋Š” ํ•˜์ค‘์žฌํ•˜์‹œ๊ฐ„์ด ์งง์•„์ง€๊ธฐ ๋•Œ๋ฌธ์— ๊ท ์—ด ์ง„์ „์ด ์–ด๋ ค์›Œ์ง„๋‹ค๋Š” ์ ๊ณผ ๊ณต๊ทน ์† ์ž์œ ์ˆ˜๊ฐ€ ๊ด€์„ฑํšจ๊ณผ๋ฅผ ์œ ๋ฐœํ•˜๋ฉฐ ๋ณ€ํ˜•์— ์ €ํ•ญํ•œ๋‹ค๋Š” ์  ๋•Œ๋ฌธ์ด๋‹ค. ์ด๋ฅผ ์ฝ˜ํฌ๋ฆฌํŠธ ์••์ถ•๊ฐ•๋„์— ๋Œ€ํ•œ ๋ณ€ํ˜•์†๋„ ํšจ๊ณผ๋ผ ํ•˜๋ฉฐ, ํ˜„์žฌ ์ด๋ฅผ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋™์ ์ฆ๊ฐ€๊ณ„์ˆ˜๊ฐ€ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ง€๊ธˆ๊นŒ์ง€ ๋งŽ์€ ๋™์ ์ฆ๊ฐ€๊ณ„์ˆ˜๊ฐ€ ์ œ์•ˆ๋˜์–ด ์™”์œผ๋‚˜, ์ œ์•ˆ๋œ ๋™์ ์ฆ๊ฐ€๊ณ„์ˆ˜๋“ค์€ ๊ณตํ†ต์ ์ธ ๋ฌธ์ œ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ ๋™์ ์ฆ๊ฐ€๊ณ„์ˆ˜๋ฅผ ์˜ค์ง ๋ณ€ํ˜•๋ฅ  ์†๋„์— ์˜ํ•œ ํ•จ์ˆ˜๋กœ ๊ฐ€์ •ํ–ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ •์ ๊ฐ•๋„, ๋ณ€ํ˜•๋ฅ  ๊ฐ€์†๋„, ์‹œํŽธ์˜ ํ˜•์ƒ ๋ฐ ํฌ๊ธฐ, ๋ฐ€๋„ ๋“ฑ ๋™์  ์žฌ๋ฃŒ๋ฌผ์„ฑ ์‹คํ—˜ ์‹œ ์‹คํ—˜๊ฒฐ๊ณผ์— ์˜ํ–ฅ์„ ์ค„ ์ˆ˜ ์žˆ๋Š” ๋‹ค๋ฅธ ๋ณ€์ˆ˜๋“ค์„ ๊ณ ๋ คํ•˜์ง€ ์•Š์•˜๋‹ค. ์ด์— ๋”ฐ๋ผ ํ˜„์žฌ ๋™์ ์ฆ๊ฐ€๊ณ„์ˆ˜ ์‹คํ—˜ ๋ฐ์ดํ„ฐ๋Š” ๊ฐ™์€ ๋ณ€ํ˜•๋ฅ  ์†๋„์—์„œ ๋„๋ฆฌ ๋ถ„์‚ฐ๋˜์–ด ์žˆ๋‹ค. ๋˜ํ•œ ๋™์ ์ฆ๊ฐ€๊ณ„์ˆ˜ ์‹คํ—˜ ๋ฐ์ดํ„ฐ์—๋Š” ์ถ•๋ฐฉํ–ฅ ๋ฐ ๋ฐ˜๊ฒฝ๋ฐฉํ–ฅ ๊ด€์„ฑํšจ๊ณผ์— ์˜ํ•œ ๊ฐ•๋„์ฆ์ง„์ด ํฌํ•จ๋˜์–ด ์žˆ์œผ๋‚˜ ์ด๋ฅผ ๋ณ€ํ˜•์†๋„ ํšจ๊ณผ์— ์˜ํ•œ ๊ฒƒ์œผ๋กœ ๊ฐ„์ฃผํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ด€์„ฑํšจ๊ณผ๋Š” ์šด๋™๋ฐฉ์ •์‹์—์„œ ์ด๋ฏธ ๊ณ ๋ คํ•˜๊ณ  ์žˆ๋Š” ํšจ๊ณผ์ด๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ๋™์ ์ฆ๊ฐ€๊ณ„์ˆ˜๋ฅผ ํ†ตํ•ด ๊ตฌ์„ฑ๋ฐฉ์ •์‹์— ๋ฐ˜์˜ํ•œ๋‹ค๋ฉด ์ค‘๋ณตํ•˜์—ฌ ๊ด€์„ฑํšจ๊ณผ๋ฅผ ๊ณ ๋ คํ•˜๊ฒŒ ๋˜๋ฉฐ ๋น„๋ณด์ˆ˜์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์„ ํ˜•ํƒ„์„ฑ์ฒด ์‹œํŽธ์— ๋Œ€ํ•œ split Hopkinson pressure bar (SHPB) ์‹คํ—˜์˜ ํ•ด์„์  ๋ชจ๋ธ๋กœ๋ถ€ํ„ฐ ๊ด€์„ฑํšจ๊ณผ์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ์ฃผ์š” ๋ณ€์ˆ˜๋ฅผ ์„ ์ •ํ•˜์˜€๋‹ค. ์ดํ›„ ์ฃผ์š” ๋ณ€์ˆ˜๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ตฌ์„ฑํ•œ ๊ฒ‰๋ณด๊ธฐ ๋™์ ์ฆ๊ฐ€๊ณ„์ˆ˜๋ฅผ ์ฝ˜ํฌ๋ฆฌํŠธ SHPB ์‹คํ—˜๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋น„์„ ํ˜• ํšŒ๊ท€๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ œ์•ˆํ•˜์˜€๊ณ , ๊ฒ‰๋ณด๊ธฐ ๋™์ ์ฆ๊ฐ€๊ณ„์ˆ˜๋กœ๋ถ€ํ„ฐ ๊ด€์„ฑํšจ๊ณผ๋ฅผ ๋ณด์ •ํ•˜์—ฌ ์ˆœ์ˆ˜ ๋ณ€ํ˜•์†๋„ ํšจ๊ณผ์— ์˜ํ•œ ๋™์ ์ฆ๊ฐ€๊ณ„์ˆ˜๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ์ˆœ์ˆ˜ ๋ณ€ํ˜•์†๋„ ํšจ๊ณผ์— ์˜ํ•œ ๋™์ ์ฆ๊ฐ€๊ณ„์ˆ˜์˜ ๊ฒ€์ฆ์„ ์œ„ํ•˜์—ฌ ์ œ์•ˆํ•œ ๋™์ ์ฆ๊ฐ€๊ณ„์ˆ˜ ๋ฐ ์ฃผ์š” ๋™์ ์ฆ๊ฐ€๊ณ„์ˆ˜๋ฅผ ์ฝ˜ํฌ๋ฆฌํŠธSHPB ์‹คํ—˜ ์œ ํ•œ์š”์†Œํ•ด์„ ๋ชจ๋ธ์— ์ ์šฉํ•˜์—ฌ ๊ฒ€์ฆ ํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ์ œ์•ˆํ•œ ๋™์ ์ฆ๊ฐ€๊ณ„์ˆ˜๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ๋†’์€ ์ •ํ™•๋„๋กœ ๋™์ ๊ฐ•๋„๋ฅผ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ๋™์ ์žฌ๋ฃŒ์‹คํ—˜์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ด€์„ฑํšจ๊ณผ๋ฅผ ๋ณด์ •ํ•˜๊ธฐ ์œ„ํ•ด ์ ์šฉํ•œ ๋ฐฉ๋ฒ•๋ก ์€ ์„ฌ์œ ๋ณด๊ฐ•์ฝ˜ํฌ๋ฆฌํŠธ ๋“ฑ ์‹œ๋ฉ˜ํŠธ๊ณ„ ์žฌ๋ฃŒ์˜ ๋‚ด์ถฉ๊ฒฉ์„ฑ๋Šฅ ๋ฐ ๋ฐฉํญ์„ฑ๋Šฅ ํ‰๊ฐ€์—๋„ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ณธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋Š” ๊ทน๋‹จ์ƒํ™ฉ ํ•˜ ์ฝ˜ํฌ๋ฆฌํŠธ ๊ตฌ์กฐ๋ฌผ์˜ ๊ฑฐ๋™ ์˜ˆ์ธก ๋ฐ ์•ˆ์ „์„ฑ ํ‰๊ฐ€, ์„ค๊ณ„์— ์œ ์šฉํ•˜๊ฒŒ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Structures under extreme events like collision of car, ship, and aircraft, explosion, earthquake, tsunami, etc. are loaded at higher deformation rate than that under quasi-static state. Therefore, in order to design economically and analyze accurately concrete structures under extreme events, dynamic material properties of structures should be investigated. Meanwhile, concrete is the material having the rate dependent property, which is that material properties like compressive and tensile strength, critical strain, etc. are changed along strain rate. Especially, concrete compressive strength becomes higher as strain rate is increased. It is caused by two reasons. First, loading duration of extreme events is too short to propagate cracks. Second, water in voids induces the inertia effects to resist deformation. This phenomenon is called as the rate effect on concrete compressive strength, and dynamic increase factor (DIF) has been used widely to consider the rate effect in analysis and design of concrete structures. Various DIFs have been suggested until now, but the DIFs have common problems. First of all, DIF has been assumed as a function of only strain rate, so other variables like static strength, strain acceleration, specimen shape, density, etc., which can influence on results of dynamic material test, were not considered. Therefore, the test data of DIF was spread widely at a strain rate point. Furthermore, the test data of DIF includes the axial and radial inertia effects, but the inertia effects were misinterpreted as the rate effect. However, the inertia effects are already covered in the equation of motion, so unconservative results can be derived by considering repetitively the inertia effects in a constitutive equation with DIF. In this study, analytical model of split Hopkinson pressure bar (SHPB) test for a linear elastic specimen was investigated to find out important variables causing the inertia effects in dynamic material test. Then, apparent DIF was suggested with the key factors by conducting nonlinear regression analysis for concrete SHPB test results. Finally, DIF considering the pure rate effect was suggested by correcting the inertia effects in apparent DIF. In order to verify proposed DIF, finite element analyses for concrete SHPB tests with proposed and representative DIFs were performed, and it was confirmed that proposed DIF predicts apparent dynamic strength of specimens with high accuracy. Methodology correcting the inertia effects in results of dynamic material test in this study can be extended for evaluations of impact and explosion resistance performances of cementitious material like fiber reinforced concrete, etc. Furthermore, it is expected that the proposed DIF can be applied to design, evaluation of safety, and behavior analysis for concrete structures under extreme events.LIST OF TABLES vii LIST OF FIGURES viii NOTATIONS xi 1. Introduction 1 1.1. Research Background 1 1.2. Research Objectives and Scope 7 1.3. Outline 8 2. Theoretical Background 9 2.1. Split Hopkinson Pressure Bar Test 9 2.1.1. Principle of SHPB test 9 2.1.2. Pulse shaped SHPB test 13 2.2. Previous Studies 17 2.2.1. Apparent DIF 17 2.2.2. Numerical studies 18 2.2.2.1 Li and Meng (2003) 18 2.2.2.2 Kim et al. (2010) 19 2.2.2.3 Magallanes et al. (2010) 21 2.2.3. Experimental studies 22 2.2.3.1 Zhang et al. (2009) 22 2.2.3.2 Hao et al. (2013) 23 2.2.4. Analytical studies 24 2.2.4.1 Davies and Hunter (1963) 24 2.2.4.2 Gorham (1989) 25 2.2.4.3 Forrestal et al. (2007) 26 2.2.5. Summary and limitations of previous studies 26 3. Suggestion of DIF Considering Pure Rate Effect 28 3.1. Important Variables Influencing Apparent DIF 28 3.1.1. Analytical model of SHPB test 28 3.1.2. Rate effect and inertia effects in apparent DIF 32 3.2. Concrete SHPB Test 35 3.2.1. Specimen preparation 36 3.2.2. SHPB test procedure 38 3.2.3 Concrete SHPB test results 44 3.3 Suggestion for DIF Considering the Pure Rate Effect 51 4. Verification of Proposed DIF 54 4.1 Verification Analyses Modeling 54 4.2 Verification Results and Discussion 57 4.2.1 Verification results 57 4.2.2 Discussion on verification 60 4.2.2.1 ACI 349-13 60 4.2.2.2 ACI 370R-14 61 4.2.2.3 fib MC2010 and UFC 3-340-02 62 5. Conclusions 63 Reference 65 ๊ตญ๋ฌธ์ดˆ๋ก 70Maste

    ๋น„ ํฌ์Šคํ„ฐ ์ •ํ•ฉ์„ ์ด์šฉํ•œ ๊ด‘๋Œ€์—ญ GaN pHEMT ์ „๋ ฅ์ฆํญ๊ธฐ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 2. ์„œ๊ด‘์„.In this thesis, a study on broadband GaN pHEMT power amplifier (PA) using non-Foster matching is presented. A watt-level PA with multi-octave bandwidth is required for broadband applications such as jamming system for electronic warfare (EW). To guarantee the high power operation, GaN device is suitable due to its high power density and high voltage operation. Therefore, in this thesis, the high PAs are fabricated through a GaN device. For broadband operation, a new wideband PA structure with high gain and high efficiency is proposed. The new broadband PA using non-Foster circuit (NFC) is referred to as a negative impedance matched power amplifier (NMPA). The bandwidth limitation from high-Q interstage matching is overcome through the use of negative capacitor, which is realized with a negative impedance converter (NIC) using the cross-coupled GaN FETs. However, since the negative impedance transducer also has a frequency limit, the following design strategy has been established. For high power operation over the entire bandwidth, the natural interstage matching is optimized for the upper sub-frequency band and the lower sub-frequency band is compensated by the negative capacitance (NC) presented by NFC. For this strategy, detailed analysis is performed to understand the frequency limitation of NIC approach, which shows that high-frequency limit comes from the self-resonance and the low-frequency limit from the power handling capability. Besides, to overcome the frequency and power limits of NFC, a cascaded stage negative impedance converter (CSNIC) structure is proposed with improved positive loop gain. In addition, the cause of the NIC loss at the high frequency is also analyzed and solved using CSNIC. Two NMPAs with NIC and a NMPA with CSNIC are fabricated with commercial 0.25-ฮผm GaN pHEMT process. The implemented PA with 2ร— combining shows the output powers of 35.7-37.5 dBm with the power added efficiencies (PAEs) of 13-21% from 6 to 18 GHz. The 4ร— combining PA achieves over 5 W output power from 7 to 17 GHz. The NMPA with CSNIC shows the output powers of 7.6-10.4 W with the PAEs of 16-23% from 7 to 18 GHz. At frequencies, where NFC is optimized for interstage matching, the power improvement by 1.2 dBm and PAE improvement by 5.7% have been achieved. The NFC boosts the efficiencies and power below 12 GHz to achieve broadband performance without using any lossy matching or negative feedback. This work also demonstrates that the CSNIC overcomes the frequency and power capability limit of the conventional NIC. To our knowledge, this is the first demonstration of NIC-based broadband amplifiers with Watt-level output power. The NMPA can provide a new perspective in designing the broadband PAs.Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Outline of This Thesis 6 Chapter 2. A 6-18 GHz GaN pHEMT Power Amplifier Using Non-Foster Matching 8 2.1 Introduction 8 2.2 Interstage Matching with NFC 11 2.3 Non-Foster Circuit 15 2.4 The limitation of Non-Foster Circuit 17 2.4.1 High Frequency Limit 17 2.4.2 Low Frequency Limit 19 2.5 Measurement Results 22 2.5.1 PA with 2ร— Combining 22 2.5.2 Noise Performance of NIC 25 2.5.2 Comparison Table 26 2.6 Conclusion 27 Chapter 3. A Broadband NMPA with Higher Output Power and Detailed Analysis for NFC 28 3.1 Introduction 28 3.2 Two-stage GaN PA with NFC 31 3.2.1 Overall Design Procedure of NMPA 31 3.3 Detailed Analysis for NFC 33 3.3.1 Topologies of the NFC 33 3.3.2 Frequency Limitation and Equivalent circuit of the NFC 36 3.3.3 Detailed NFC Design for Broadband PAs 38 3.4 Measurement Results 44 3.4.1 Parallel Combined PA with 4ร— Combining 46 3.4.2 Comparison Table 49 3.5 Conclusion 51 Chapter 4. A Broadband GaN pHEMT Power Amplifier Using Cascaded Stage Negative Impedance Converter 52 4.1 Introduction 52 4.1.1 Cause of losing non-Foster operation 53 4.1.2 NFC conditions for obtaining broadband NC 54 4.2 Cascaded Stage Negative Impedance Converter 55 4.2.1 Operation Principle and Circuit Design 55 4.2.2 Loss Compensation of NFC 60 4.3 Measurement Results 71 4.3.1 NMPA with CSNIC 71 4.3.2 Frequency Limit of CSNIC 77 4.3.3 Noise performance of CSNIC 81 4.3.4 Comparison Table 82 4.5 Conclusion 84 Chapter 5. Conclusion 85 Bibliography 87 Abstract in Korean 93Docto

    VRML์„ ์ด์šฉํ•˜๋Š” 3์ฐจ์› ์œตํ•ฉ ์˜์ƒ์˜ ๊ฐ€์‹œํ™”์™€ ์œ„์น˜ ์ธก์ • ๊ตฌํ˜„ : ๊ฐ„์งˆ๊ณผ ๋‡Œ์กธ์ค‘ ํ™˜์ž

    No full text
    Dept. of Medical Science/์„์‚ฌ[ํ•œ๊ธ€] ๊ฐ€์ƒ ํ˜„์‹ค ๊ตฌํ˜„ ์–ธ์–ด(Virtual Reality Modeling, Language, VRML)๋ฅผ ์ด์šฉํ•˜๋Š” 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด๋Š” World Wide Web (WWW)์—์„œ ์ง๊ด€์ ์ธ ์ •๋ณด๋ฅผ ๊ณต์œ ํ•  ์ˆ˜ ์žˆ๋Š” ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ์ด ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ํ•ด๋ถ€ํ•™์  ๋‹จ๋ฉด์„ ๋‚˜ํƒ€๋‚ด๋Š” MR ์˜์ƒ๊ณผ ํ•จ๊ป˜ ํ•ต์˜ํ•™๊ณผ ๊ด€๋ จ๋œ VRML ์œตํ•ฉ ๋ชจ๋ธ๋“ค์„ ๊ฐ€์‹œํ™”ํ•˜๋Š” ๊ฒƒ, ํ•ด๋ถ€ํ•™์  ๋‹จ๋ฉด์„ ๋‚˜ํƒ€๋‚ด๋Š” MR ์˜์ƒ๊ณผ ํ•จ๊ป˜ ํ™•์‚ฐ ๊ฐ•์กฐ MRI์™€ ๊ด€๊ณ„๋˜๋Š” VRML ์œตํ•ฉ ๋ชจ๋ธ๋“ค์„ ์‹คํ˜„ํ•˜๋Š” ๊ฒƒ, ๊ทธ๋ฆฌ๊ณ  WWW์—์„œ 3D ์ธก์ • ๋„๊ตฌ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ทธ ๋ชจ๋ธ๋“ค์˜ ๊ณต๊ฐ„์ ์ธ ์œ„์น˜ ์ธก์ •์„ ์„ฑ์ทจํ•˜๋Š” ๊ฒƒ์ด๋‹ค. T1-๊ฐ•์กฐ MR, ๋ฐœ์ž‘๊ณผ ๋ฐœ์ž‘๊ฐ„๊ธฐ SPECT ์˜์ƒ๋“ค์ด ํ•œ ๋ช…์˜ ๊ฐ„์งˆ ํ™˜์ž๋กœ๋ถ€ํ„ฐ ํš๋“๋˜์—ˆ๋‹ค. ๋˜ํ•œ T1-๊ฐ•์กฐ MR๊ณผ ํ™•์‚ฐ ๊ฐ•์กฐ MR ์˜์ƒ๋“ค์ด ํ•œ ๋ช…์˜ ๋‡Œ์กธ์ค‘ ํ™˜์ž๋กœ๋ถ€ํ„ฐ ์–ป์–ด์กŒ๋‹ค. MRI์™€ ์ •ํ•ฉ๋˜๋Š” ์ฐจ๊ฐ ๋ฐœ์ž‘ SPECT(SISCOM)๊ฐ€ ๊ฐ„์งˆ ํ™˜์ž์˜ ๊ฐœ์„ ๋œ ์˜์ƒ์„ ๋งŒ๋“ค์–ด๋‚ด๋Š” ํ•œ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์œผ๋กœ์„œ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. SISCOM ์ง„์›์ง€๋“ค, ํ™•์‚ฐ ์ด์ƒ๋ถ€์œ„, ๊ทธ๋ฆฌ๊ณ  ์„ธ ๊ฐ€์ง€ ํ•ด๋ถ€ํ•™์  ๊ตฌํš๋“ค์ด ๋ถ„ํ• ๋˜์—ˆ๊ณ  marching cube ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์˜ํ•ด์„œ ๊ธฐํ•˜ํ•™์ ์œผ๋กœ VRML ํ‘œ๋ฉด๋“ค๋กœ ๊ฐ๊ฐ ํ‘œํ˜„๋˜์—ˆ๋‹ค. 3D ์ธก์ • ๋„๊ตฌ๊ฐ€ ๊ฐœ๋ฐœ๋˜์–ด ์ด์ „์˜ VRML ํ‘œ๋ฉด๋“ค๊ณผ ๊ฒฐํ•ฉ๋˜์—ˆ๋‹ค. ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค ๋„๊ตฌ๋“ค์ด Java script routine๋“ค๊ณผ ํ•จ๊ป˜ ์‚ฝ์ž…๋˜์—ˆ๊ณ  ๊ฐ„์งˆ ํ™˜์ž์˜ ๋ฐœ์ž‘ ์ง„์›์ง€๋“ค๊ณผ ํ™•์‚ฐ ๊ฐ•์กฐ MRI ์ด์ƒ๋ถ€์œ„๋“ค์ด 3D ์ธก์ • ๋„๊ตฌ๋ฅผ ์ด์šฉํ•˜์—ฌ ์˜ˆ์ธก๋˜์—ˆ๋‹ค. ์ด ์ƒˆ๋กœ์šด VRML ์‘์šฉ์— ๋Œ€ํ•œ ์žฅ์ ๊ณผ ์•ฝ์ ๋“ค์ด ์ด ๋ชจ๋ธ๋ง ๊ธฐ์ˆ ์˜ ๋‹ค์–‘ํ•œ ์ธก๋ฉด์—์„œ ๋…ผ์˜๋˜์–ด์ง„๋‹ค. [์˜๋ฌธ]Three-dimensional (3D) display using Virtual Reality Modeling Language (VRML) as a portable file format is an effective way of sharing intuitive information on the World Wide Web (WWW). The aim of this study was to visualize VRML-fused models related to nuclear medicine with anatomic planar MR images, to realize VRML-fused models related to diffusion-weighted MRI with anatomic planar MR images, and to achieve their spatial localization using a 3D measurement tool over the WWW. T1-weighted MR, ictal and interictal SPECT images were obtained from one epileptic patient. T1-weighted MR and diffusion-weighted MR images were acquired from one stroke patient. Subtraction ictal SPECT co-registered to MRI (SISCOM) was used as a method to produce advanced images of the epileptic patient. The SISCOM foci, diffusion abnormalities, and three anatomic compartments were digitally segmented and geometrically rendered to the VRML surfaces by a marching cube algorithm, respectively. A 3D measurement tool was developed and then merged with the previous VRML surfaces. User interface tools were embedded with the Java script routines, and the rectangular positions of the epileptic seizure foci and diffusion-weighted MRI abnormalities were estimated using the 3D measurement tool. The strengths and weakness of this new VRML application with the various aspects of this modeling technique are discussed.restrictio

    CABIN1 ํŽฉํƒ€์ด๋“œ๋ฅผ ์ด์šฉํ•œ ๋Œ€์ฒด calcineurin ์–ต์ œ์ œ ๊ฐœ๋ฐœ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ๋ถ„์ž์˜ํ•™ ๋ฐ ๋ฐ”์ด์˜ค์ œ์•ฝํ•™๊ณผ, 2022. 8. ์œคํ™๋•.The C-terminal fragment of calcineurin binding protein-1 (CABIN1) interacts with calcineurin and represses the transcriptional activity of nuclear factor of activated T cells (NFAT). However, the specific sequences and mechanisms through which it binds to calcineurin are unclear. This study determined that decameric peptide (CABIN1 residues 2146 to 2155) is minimally required for binding to calcineurin. This peptide contains a unique โ€œPPTPโ€ C-terminal sequence and a โ€œPxIxITโ€ N-terminal motif. Furthermore, p38 MAPK phosphorylated the threonine residue of the โ€œPPTPโ€ sequence under physiological conditions, dramatically enhancing the peptideโ€™s binding affinity to calcineurin. Therefore, the CABIN1 peptide inhibited the calcineurin-NFAT pathway and the activation of T cells more efficiently than the VIVIT peptide without affecting calcineurinโ€™s phosphatase activity. The CABIN1 peptide could thus be a more potent calcineurin inhibitor and provide therapeutic opportunities for various diseases caused by the calcineurin-NFAT pathway.CABIN1 ๋‹จ๋ฐฑ์งˆ์˜ ์นด๋ฅด๋ณต์‹ค ๋ง๋‹จ ์กฐ๊ฐ์€ calcineurin๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•˜์—ฌ T์„ธํฌ ํ™œ์„ฑํ™”์— ํ•„์ˆ˜์ ์ธ NFAT์˜ ์ „์‚ฌํ™œ์„ฑ์„ ์–ต์ œํ•œ๋‹ค. ํ•˜์ง€๋งŒ calcineurin๊ณผ ๊ฒฐํ•ฉํ•˜๋Š” ์ •ํ™•ํ•œ ์•„๋ฏธ๋…ธ์‚ฐ ์„œ์—ด๊ณผ ๊ทธ ๊ธฐ์ „์— ๋Œ€ํ•ด์„œ๋Š” ์•„์ง ๋ฐํ˜€์ง€์ง€ ์•Š์•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” CABIN1์˜ ์นด๋ฅด๋ณต์‹ค ๋ง๋‹จ ์กฐ๊ฐ๊ณผ calcineurin์˜ ๊ฒฐํ•ฉ์— ์žˆ์–ด ์ตœ์†Œํ•œ CABIN1์˜ 2146๋ฒˆ๋ถ€ํ„ฐ 2155๋ฒˆ๊นŒ์ง€ 10๊ฐœ ์•„๋ฏธ๋…ธ์‚ฐ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์ž…์ฆํ•˜์˜€๋‹ค. ์ด ํŽฉํƒ€์ด๋“œ๋Š” ์•„๋ฏธ๋…ธ ๋ง๋‹จ์— โ€œPxIxITโ€ ๋ชจํ‹ฐํ”„๋ฅผ ๊ฐ€์ง€๊ณ , ์นด๋ฅด๋ณต์‹ค ๋ง๋‹จ์— ๊ณ ์œ ํ•œ โ€œPPTPโ€ ์„œ์—ด์„ ๊ฐ–๋Š”๋‹ค. ์ƒ๋ฆฌ์ ์ธ ํ™˜๊ฒฝ์—์„œ p38 MAPK๋Š” โ€œPPTPโ€์„œ์—ด์˜ ํŠธ๋ ˆ์˜ค๋‹Œ ์ž”๊ธฐ๋ฅผ ์ธ์‚ฐํ™” ์‹œํ‚ค๊ณ , ์ด๋Š” CABIN1 ํŽฉํƒ€์ด๋“œ์˜ calcineurin์— ๋Œ€ํ•œ ๊ฒฐํ•ฉ๋ ฅ์„ ์ƒ๋‹นํžˆ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค. ๊ทธ๋กœ ์ธํ•ด CABIN1 ํŽฉํƒ€์ด๋“œ๋Š” calcineurin์˜ ํƒˆ์ธ์‚ฐํ™” ํšจ์†Œํ™œ์„ฑ์— ์˜ํ–ฅ์„ ์ฃผ์ง€ ์•Š์œผ๋ฉด์„œ VIVIT ํŽฉํƒ€์ด๋“œ๋ณด๋‹ค ๋” ํšจ๊ณผ์ ์œผ๋กœ calcineurin-NFAT ๊ฒฝ๋กœ์™€ T ์„ธํฌ์˜ ํ™œ์„ฑ์„ ์–ต์ œํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, CABIN1 ํŽฉํƒ€์ด๋“œ๋Š” ๋Œ€์ฒด calcineurin ์–ต์ œ์ œ๋กœ์„œ ํฐ ์ž ์žฌ๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ , calcineurin-NFAT ๊ฒฝ๋กœ์— ์˜ํ•ด ์œ ๋ฐœ๋˜๋Š” ๋‹ค์–‘ํ•œ ์งˆ๋ณ‘์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์น˜๋ฃŒ๊ธฐํšŒ๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.โ… . INTRODUCTION 1 โ…ก. MATERIALS AND METHODS 11 โ…ข. RESULTS 25 โ…ฃ. DISCUSSION 71 โ…ค. REFERENCES 79 โ…ฅ. ABSTRACT IN KOREAN 90๋ฐ•

    ํด๋ฆฌ์—ํ‹ธ๋ Œ์ด๋ฏผ์— ๋„์ž…๋œ ์นดํ…Œ๋‚œ๋“œ ์œ ์‚ฌ์ฒด์™€ ์ธ๊ณต๊ธˆ์†ํšจ์†Œ

    No full text
    Thesis (doctoral)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :ํ™”ํ•™๊ณผ ์œ ๊ธฐํ™”ํ•™์ „๊ณต,1997.Docto
    • โ€ฆ
    corecore