22 research outputs found

    ์—๋ฅด๋ฏธํŠธ ๋ฐ ํŠน์ˆ˜ ์—๋ฅด๋ฏธํŠธ ์ „๊ฐœ์— ๊ด€ํ•œ ๋ฌธ์ œ๋“ค

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ˆ˜๋ฆฌ๊ณผํ•™๋ถ€, 2021.8. ์ด์ƒํ˜.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” Rd\mathbb R^d ์œ„์˜ ์—๋ฅด๋ฏธํŠธ ๋ฐ Cd\mathbb C^d ์œ„์˜ ํŠน์ˆ˜ ์—๋ฅด๋ฏธํŠธ ์ „๊ฐœ์™€ ๊ด€๋ จ๋œ ๋ฌธ์ œ๋ฅผ ์—ฐ๊ตฌํ•œ๋‹ค. ์—๋ฅด๋ฏธํŠธ์™€ ํŠน์ˆ˜ ์—๋ฅด๋ฏธํŠธ ํ•จ์ˆ˜๋Š” ์กฐํ™”ํ•ด์„ํ•™, ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹ ๋ฐ ์–‘์ž์—ญํ•™๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํŠนํžˆ ์ค‘์š”ํ•œ ํŠน์ˆ˜ ํ•จ์ˆ˜์ด๋‹ค. ฮ ฮปH\Pi_\lambda^H ์™€ ฮ ฮปL\Pi_\lambda^L ๋ฅผ ๊ฐ๊ฐ ์—๋ฅด๋ฏธํŠธ ๋ฐ ํŠน์ˆ˜ ์—๋ฅด๋ฏธํŠธ ์ „๊ฐœ์— ๋Œ€ํ•œ ์ŠคํŽ™ํŠธ๋Ÿผ ์‚ฌ์˜ ์—ฐ์‚ฐ์ž๋ผ ์ •์˜ํ•  ๋•Œ, ๋ณธ ๋…ผ๋ฌธ์€ ฮ ฮปH\Pi_\lambda^H, ฮ ฮปL\Pi_\lambda^L์˜ LpL^p--LqL^q ๋…ธ๋ฆ„์˜ ์ตœ์  ์œ ๊ณ„ ๋ฌธ์ œ๋ฅผ ๊ณ ๋ คํ•œ๋‹ค. ์ด ๋ฌธ์ œ๋Š” pp ๋˜๋Š” qq๊ฐ€ 22์ผ ๋•Œ์— ํ•œํ•˜์—ฌ ์ฃผ๋กœ ์—ฐ๊ตฌ๋˜์–ด์™”๋‹ค. ์ฒซ์งธ, ฮ ฮปH\Pi_\lambda^H ์˜ ๊ตญ์†Œ LpL^p--LqL^q ๋…ธ๋ฆ„์„ ์™„์ „ํžˆ ํŠน์ •ํ•˜์˜€๋‹ค. ๋‘˜์งธ, ์ฝ”ํ์™€ ํƒ€ํƒ€๋ฃจ์˜ ๊ฒฐ๊ณผ ์ดํ›„๋กœ ๋ฏธํ•ด๊ฒฐ๋กœ ๋‚จ์•„์žˆ์—ˆ๋˜ ฮ ฮปH\Pi_\lambda^H์˜ L2L^2--L2(d+3)/(d+1)L^{{2(d+3)}/{(d+1)}} ๋์  ๊ณ„์ธก์„ dd๊ฐ€ 55 ์ด์ƒ์ผ ๋•Œ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ์…‹์งธ, ฮ ฮปH\Pi_\lambda^H์˜ ๊ณ ๋ฅธ ์œ ๊ณ„๊ฐ€ ์„ฑ๋ฆฝํ•˜๋Š” ๋ฒ”์œ„๋ฅผ ํ™•์žฅํ•˜์˜€๋‹ค. ์ด์˜ ์‘์šฉ์œผ๋กœ, ์—๋ฅด๋ฏธํŠธ ์—ฐ์‚ฐ์ž์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด LpL^p--LqL^q ์—ญํ•ต ๊ณ„์ธก์„ ์–ป์–ด๋‚ด์—ˆ์œผ๋ฉฐ, LtโˆžLxd/2,โˆžL^\infty_t L^{d/2,\infty}_x์— ํฌํ•จ๋œ ํผํ…์…œ์„ ๊ฐ€์ง€๋Š” ์—ด ๋ฐฉ์ •์‹์— ๋Œ€ํ•œ ๊ฐ• ์œ ์ผ์„ฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ํŠน์ˆ˜ ์—๋ฅด๋ฏธํŠธ ์ „๊ฐœ์— ๋Œ€ํ•ด์„œ ฮ ฮปL\Pi_\lambda^L์˜ ์œ ๊ณ„์„ฑ์„ ์™„์ „ํžˆ ๊ทœ๋ช…ํ•˜์˜€์œผ๋ฉฐ ๋’คํ‹€๋ฆฐ ๋ผํ”Œ๋ผ์Šค ์—ฐ์‚ฐ์ž์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด LpL^p--LqL^q ์—ญํ•ต ๊ณ„์ธก์„ ์–ป์—ˆ๋‹ค. ๋˜ํ•œ, ๋ณธ ๋…ผ๋ฌธ์€ ์—๋ฅด๋ฏธํŠธ์™€ ํŠน์ˆ˜ ์—๋ฅด๋ฏธํŠธ ์ „๊ฐœ์— ๋Œ€ํ•œ LpL^p ๋ณดํฌ๋„ˆ-๋ฆฌ์ฆˆ ๊ฐ€ํ•ฉ์„ฑ ๋ฌธ์ œ๋ฅผ ์กฐ์‚ฌํ•œ๋‹ค. ์ด์ „ ์—ฐ๊ตฌ๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ L2L^2--LpL^p ์ŠคํŽ™ํŠธ๋Ÿผ ์‚ฌ์˜ ๊ณ„์ธก์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ „๋žต์—๋Š” ๋ถ„๋ช…ํ•œ ๊ธฐ์ˆ ์  ๊ฒฐํ•จ์ด ์กด์žฌํ•ด์„œ ์Šคํƒ€์ธ-ํ† ๋งˆ์Šค ์ •๋ฆฌ๋ฅผ ๋„˜์–ด์„œ๋Š” ์ตœ์  ๊ฒฐ๊ณผ๋Š” ์ด์ „์— ์•Œ๋ ค์ง„ ๋ฐ”๊ฐ€ ์—†์—ˆ๋‹ค. ์ปค๋„์„ ๊ตฌ์ฒด์ ์œผ๋กœ ๋ฌ˜์‚ฌํ•˜๋Š” ๊ณต์‹๊ณผ ์ง„๋™ ์ ๋ถ„์— ๋Œ€ํ•œ ์ตœ๊ทผ ๊ฒฐ๊ณผ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ์„ ํ†ตํ•ด, 2์ฐจ์›์—์„œ๋Š” ์ตœ์  ๋ฒ”์œ„์˜ ๊ฐ€ํ•ฉ์„ฑ์„ ์ฆ๋ช…ํ•˜์˜€๊ณ , ๋” ๋†’์€ ์ฐจ์›์—์„œ๋Š” ์ด์ „์— ์•Œ๋ ค์ง„ ๋ฒ”์œ„๋ฅผ ํฌ๊ฒŒ ํ™•์žฅํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์—๋ฅด๋ฏธํŠธ ๋ณดํฌ๋„ˆ-๋ฆฌ์ฆˆ ํ‰๊ท ์˜ LpL^p ๊ฐ€ํ•ฉ์„ฑ ์ง€์ˆ˜์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ํ•„์š”์กฐ๊ฑด์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ์ด๋Š” ๊ธฐ์กด์˜ ๊ฐ€ํ•ฉ์„ฑ์— ๋Œ€ํ•œ ์ถ”์ธก์„ ๋ฐ˜์ฆํ•˜๊ณ , ์ƒˆ๋กœ์šด ๊ฐ€์„ค์„ ์ œ์‹œํ•œ๋‹ค.In this thesis, we study problems related to the Hermite expansion on Rd\mathbb R^d and the special Hermite expansion on Cd\mathbb C^d. Hermite and special Hermite functions are special functions of particular importance in diverse fields such as harmonic analysis, differential equations, and quantum mechanics. Let ฮ ฮปH\Pi_\lambda^H and ฮ ฮปL\Pi_\lambda^L respectively denote the spectral projection operators for the Hermite and the special Hermite expansions. We consider the optimal bounds on the LpL^p--LqL^q operator norms of ฮ ฮปH\Pi_\lambda^H, ฮ ฮปL\Pi_\lambda^L. The problem has been mainly studied when pp or qq is 22. First of all, we completely characterize the local LpL^p--LqL^q bounds of ฮ ฮปH\Pi_\lambda^H. Secondly, we obtain the L2L^2--L2(d+3)/(d+1)L^{{2(d+3)}/{(d+1)}} endpoint estimate for ฮ ฮปH\Pi_\lambda^H when dโ‰ฅ5d\ge 5, which has been left open since the work of Koch and Tataru. Thirdly, we extend the range of the uniform boundedness of ฮ ฮปH\Pi_\lambda^H. As its applications, we prove new LpL^p--LqL^q resolvent estimates for the Hermite operator and solve the strong unique continuation problem for the heat equation with the potentials contained in LtโˆžLxd/2,โˆžL^\infty_t L^{d/2,\infty}_x. Lastly, for the special Hermite expansion, we obtain a complete picture for the boundedness of ฮ ฮปL\Pi_\lambda^L and show new LpL^p--LqL^q resolvent estimates for the twisted Laplacian. We also investigate the LpL^p Bochner-Riesz summability problem for the Hermite and special Hermite expansions, which is one of the most important problems in harmonic analysis. The previous studies were commonly based on the L2L^2--LpL^p spectral projection estimates. However, such a strategy clearly has a technical shortcoming so that no sharp results were previously known beyond the Tomas-Stein theorem. By a new approach based on the explicit formula for the kernel and recent results for the oscillatory integral, we establish the summability on the sharp range of pp in two dimensions and significantly improve the previously known range in higher dimensions. Also, we prove a new necessary condition on the LpL^p summability index for the Hermite Bochner-Riesz means. This invalidates the conventional conjecture and proposes a new conjecture on the Bochner-Riesz summability.1 Introduction 1 2 Hermite spectral projection estimates 12 2.1 Introduction 12 2.2 The projection operator ฮ ฮปH\Pi_\lambda^H and TTโˆ—TT^* argument 21 2.3 Local estimate: Proof of Theorem 2.1.5 34 2.4 Localization on annuli and L2L^2 estimate 54 2.5 Unbalanced improvement: Proof of Theorem 2.1.3 65 2.6 Proof of Proposition 2.5.7 76 2.7 Estimates with p,qp, q off the line of duality over AฮผยฑA_\mu^\pm 92 3 Special Hermite spectral projection estimates 117 3.1 Introduction 117 3.2 Preliminaries 121 3.3 Proof of Theorem 3.1.2: Sufficiency part 125 3.4 Proof of Theorem 3.1.2: Sharpness 130 4 Applications of spectral projection estimates 134 4.1 Introduction 134 4.2 Resolvent estimate for the Hermite operator 140 4.3 Carleman inequality for the heat operator: Proof of Theorem 4.1.1 145 4.4 Resolvent estimate for the twisted Laplacian 149 5 Bochner-Riesz means for the Hermite and special Hermite expansions 153 5.1 Introduction 153 5.2 Bochner-Riesz means for the Hermite expansion: Proof of Theorem 5.1.2 . . 158 5.3 Bochner-Riesz means for the special Hermite expansion: Proof of Theorem 5.1.4 . . 178 5.4 Lower bound on the summability index of Sฮปฮด(H)S_\lambda^\delta(H) 191 Abstract (in Korean) 205 Acknowledgement (in Korean) 206๋ฐ•

    Wifi-based Indoor Localization

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2016. 2. ๊น€ํ˜„์ง„.With recent advances in smartphone industry, an indoor localization using smartphone becomes of increasing interests due to the need for indoor position information where GPS is not available. Fortunately, prevalence of wireless access points (APs), which are built in many buildings and public spaces, helps developing a wifi-based indoor localization without additional installation. This thesis considers a wifi-based indoor localization, where the wifi received signal strength (RSS) as a function of distance between a receiver (smartphone) and a transmitter (wireless AP) is applied to estimate both the floor level and position. The wifi RSS is non-linear and varying due to interference of the other radio signals and obstacles. Especially, signal attenuation and multipath effect are the major impediment against accurate localization. Because of those effects, the estimation methods using a propagation model of wifi RSS such as a triangulation and a least-square are inaccurate. This thesis proposes learning-based localization methods as a solution for those issues by training a nonlinear and unpredictable wifi RSS model. In particular, a semi-supervised learning algorithm is efficient for localization by removing a need for a large amount of the labeled training data. For example, in indoor localization, the labeled training data have to be collected manually. On the other hand, unlabeled data can be easily collected by recording wifi signal strength without the labels such as the position information and floor level. By using a large amount of unlabeled data and a small amount of labeled data, the semi-supervised learning algorithm improves efficiency and accuracy of the localization. The main contribution compared to the existing indoor localization can be found in i) mobile fingerprinting and ii) mapless localization. First, we address the efficiency for obtaining position training data, which is called fingerprinting. In the conventional fingerprinting, we have to collect the training data manually, which needs much time and effort of human. This thesis suggests a mobile fingerprinting based on a new semi-supervised learning algorithm, which provides the accurate pseudolabels of the unlabeled data. Second, by considering both privacy and communication issues between a service provider and user, this thesis proposes a mapless localization. With a concept of the crowdsourcing, we use the estimated locations obtained from the crowds, as the samples for learning a map. This is also based on a semi-supervised learning technique, and experimental results validate that more accurate map is learned as more participants join our localization system. Our final contribution involves field experiments in an office building at Seoul National University. We obtain training datapoints from different smartphone users who are not given any guideline about restricted attitude to carry the smartphone, for example, not to swing the smartphone or not to put it in pocket. From the experimental results, we find out that successful estimation of floor level and position. Also, the learned map is very close to the true map so that mapless localization is almost accurate as the result using the true map information.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature review 3 1.2.1 Wifi-based indoor localization 3 1.2.2 Semi-supervised learning 4 1.2.3 Mapless localization 6 1.3 Objectives and contribution 6 1.3.1 Pattern recognition of wifi RSS for indoor localization 7 1.3.2 Pseudolabelling for efficient training data collection 8 1.3.3 Mapless localization by trajectory learning 9 1.4 Thesis organization 11 Chapter 2 Feature Extraction from Wifi RSS data for Floor Classification and Landmark Detection 12 2.1 Characteristics of smartphone sensors 13 2.1.1 Inertial measurement unit (IMU) in smartphone 13 2.1.2 Wifi RSS characteristics 17 2.2 Semi-supervised learning for feature extraction 24 2.2.1 Generalized eigenvalue problem 24 2.2.2 PCA 25 2.2.3 FDA 26 2.2.4 Semi-supervised combination of FDA and PCA 27 2.3 Experimental results 29 2.3.1 Classification 29 2.3.2 Landmark detection 32 2.3.3 Effect of balancing parameter 34 Chapter 3 Mobile Fingerprinting and Pseudolabelling for Positioning 36 3.1 Learning based indoor localization 37 3.2 Basic semi-supervised optimization 38 3.2.1 Optimization framework 38 3.2.2 Laplacian embedded regularized least square (LapERLS) 43 3.3 Hodric-prescott filter optimization 46 3.4 Proposed semi-supervised optimization for pseudolabelling of mobile fingerprinting 47 3.5 Expereimental results of pseudolabelling 51 3.5.1 Sinusoidal trajectory 53 3.5.2 Overlapped trajectory 56 3.5.3 Revisiting the learned trajectory 56 3.5.4 Comparison with other semi-supervised learning algorithms 57 Chapter 4 Mapless Indoor Localization 59 4.1 Particle filter based localization framework 60 4.2 Gaussian process regression for modelling wifi RSS likelihood 63 4.2.1 Problem formulation 63 4.2.2 Hyperparameter selection 66 4.2.3 Building a prior 66 4.2.4 Experimental localization result 68 4.3 Map learning from a crowd 70 4.3.1 Concept of learning indoor trajectory 70 4.3.2 Trajectory learning algorithm 71 4.3.3 Experimental results of mapless localization 75 Chapter 5 Integrated Expereimental Result 77 5.1 Experimental setup 77 5.2 Result of map learning 79 5.3 Results of localization and floor classification 83 Chapter 6 Conclusion 90 References 92 Abstract (in Korean) 99Docto

    ๋…ผํ‰ / ' ๋ถ€์ต๋ถ€ ๋นˆ์ต๋นˆ ' ์„ ์‹ฌํ™”์‹œํ‚ค๋Š” ํ•œ๊ตญ ์ฃผํƒ์‹œ์žฅ์˜ ์™œ๊ณก ๊ตฌ์กฐ

    No full text
    ํ•˜ ๊ต์ˆ˜์˜ ๋…ผ๋ฌธ์€ ์ „๋ฐ˜์ ์œผ๋กœ ์ด์ฃผ ์ž˜ ์งœ์—ฌ์ ธ ์žˆ๊ณ  ์„ค๋“๋ ฅ์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ทธ ์ค‘์—์„œ ๋ณด์™„๋˜์–ด์•ผ ํ•  ๋ช‡ ๊ฐ€์ง€ ๋ถ€๋ถ„์— ํ•œ์ •ํ•˜์—ฌ ๋…ผํ‰ํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ฒซ๋ฒˆ์งธ ๋ฌธ์ œ๋Š” ์ฃผํƒ ๋ฌธ์ œ๋ฅผ ๋‘˜๋Ÿฌ์‹ผ ์ž๊ธˆ์˜ ํ๋ฆ„์— ๊ด€ํ•œ ๊ฒƒ์ด๋‹ค. ์ฆ‰ ์ฃผํƒ์„ ๋ฐฐ๋ถ„ํ•˜๋Š” ๊ณผ์ •์—์„œ ๊ทผ๋กœ์†Œ๋“(Inocome)์„ ๊ทผ๊ฑฐ๋กœ ํ•˜๋Š”๊ฐ€ ์ž์‚ฐ(Wealth)์„ ๊ทผ๊ฑฐ๋กœ ํ•˜๋Š”๊ฐ€ ํ•˜๋Š” ๋ฌธ์ œ์ด๋‹ค. ์ฃผํƒ ๋ฌธ์ œ๊ฐ€ ์•ˆ์ •๋œ ๋‚˜๋ผ์—์„œ๋Š” ์ฃผํƒ์„ ๊ตฌ์ž…ํ•˜๋“  ์ž„์ฐจํ•˜๋“ ๊ฐ„์— ๋Œ€์ฒด๋กœ ์›” ๊ทผ๋กœ์†Œ๋“์˜ 1/4์„ ์›” ์ƒํ™˜๊ธˆ ๋‚ด์ง€๋Š” ์›”์„ธ๋กœ ๋‚ด๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‚ฌํšŒ ์†์—์„œ ๋Š” ๋ชซ๋ˆ ๋งˆ๋ จ์˜ ๋ถ€๋‹ด์ด ์—†๊ธฐ ๋•Œ๋ฌธ์— ์„ฑ์‹คํ•˜๊ฒŒ ์ผํ•˜๋Š” ์ง์žฅ์ธ๋“ค์ด ํฐ ์–ด๋ ค์›€ ์—†์ด ์ฃผ๊ฑฐ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด์— ๋น„ํ•ด ์ฃผํƒ๊ธˆ์œต์ œ๋„๊ฐ€ ๋ฐœ๋‹ฌ๋˜์ง€ ๋ชปํ•ด ๊ฑฐ์˜ ํ˜„๊ธˆ ๊ฑฐ๋ž˜๋งŒ์„ ํ•˜๊ณ  ์žˆ๋Š” ์šฐ๋ฆฌ ๋‚˜๋ผ์—์„œ๋Š” ๊ทผ๋กœ์†Œ๋“์œผ๋กœ ์ฃผ๊ฑฐ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๊ฒŒ ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค. ๋”๊ตฐ๋‹ค๋‚˜ ์ „์„ธ ์œ„์ฃผ๋กœ ๋˜์–ด์žˆ๋Š” ์ž„๋Œ€ ์‹œ์žฅ์˜ ํŠน์ˆ˜ ์„ฑ ๋•Œ๋ฌธ์— ๋ชจ๋“  ์„ธ์ž…์ž๋“ค์ด ๋ชซ๋ˆ ๋งˆ๋ จ์˜ ๋ถ€๋‹ด์„ ์•ˆ๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ 1๋…„ ๊ฐ„์˜ ์ž„๊ธˆ์ƒ์Šน์•ก์˜ 2~3๋ฐฐ ์ •๋„๋กœ ์ „์„ธ๊ธˆ์ด ์˜ค๋ฅด๊ธฐ ๋•Œ๋ฌธ์— ๊ทผ๋กœ์†Œ๋“์œผ๋กœ๋Š” ๊ฐ๋‹นํ•  ๊ธธ์ด ์—†๋‹ค. ๋”ฐ๋ผ์„œ ๋ชจ๋“  ๊ตญ๋ฏผ๋“ค์ด ๋ถ€์ฑ„๊ฐ€ ๋Š˜์–ด๋‚˜๊ณ  ๋ถ€๋ชจ ์นœ์ง€์˜ ์žฌ์‚ฐ ์ด์ „์„ ํ†ตํ•ด์„œ ์ฃผ๊ฑฐ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋‹ค ๋ณด๋‹ˆ ์ž์‚ฐ์ด ์—†๋Š” ๊ทผ๋กœ์†Œ๋“ ๊ณ„์ธต์€ ์•„๋ฌด๋Ÿฐ ๋Œ€์ฑ…์„ ๋งˆ๋ จํ•  ์ˆ˜ ์—†๋‹ค. ํ•œ๊ตญ์˜ ์ฃผํƒ ๋ถ„๋ฐฐ ๊ตฌ์กฐ๋Š” ์ด๋Ÿฐ ์˜๋ฏธ์—์„œ ๊ฐ€์žฅ ์ฒ ์ €ํ•˜๊ฒŒ ๋ถ€์ต๋ถ€ ๋นˆ์ต๋นˆ(ๅฏŒ็›ŠๅฏŒ่ฒง็›Š่ฒง)์„ ์˜์†์‹œํ‚ค๋Š” ๊ตฌ์กฐ์  ๋ชจ์ˆœ์„ ์•ˆ๊ณ  ์žˆ๋‹ค

    Object tracking using Support Vector Regression in Wireless Sensor Networks

    No full text
    ๋ณธ ๋…ผ๋ฌธ์€ ์„ผ์„œ ๋„คํŠธ์›Œํฌ๋ฅผ ์ด์šฉํ•˜์—ฌ ์‚ฌ๋žŒ์˜ ์œ„์น˜๋ฅผ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ์ง€์› ๋ฒกํ„ฐ ํšŒ๊ท€๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด์˜ ์ง€์› ๋ฒกํ„ฐ ํšŒ๊ท€๋ฒ•์„ ์ด์šฉํ•œ ์ถ”์ • ๊ธฐ๋ฒ•์€ ๋ฐ์ดํ„ฐ์˜ ์–‘์ด ๋งŽ์•„์ง์— ๋”ฐ๋ผ ์‹ค์‹œ๊ฐ„ ๊ฒŒ์‚ฐ ์ˆ˜ํ–‰์ด ๋Š๋ ค์ง€๋ฉฐ ์—๋„ˆ์ง€ ํšจ์œจ์ด ๋†’์ง€ ์•Š์€ ๋‹จ์ ์„ ๊ฐ–๊ณ  ์ž‡๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ์ด ๋…ผ๋ฌธ์€ ์‹คํ—˜๊ณต๊ฐ„์— ๋ฟŒ๋ ค์ง„ ๋ชจ๋“  ์„ผ์„œ ๋…ธ๋“œ ์ค‘์—์„œ, ๋ฏธํ™•์ธ ๋ฌผ์ฒด์˜ ์œ„์น˜์— ๋”ฐ๋ผ ๋น„๊ต์  ์ข‹์€ ์ •๋ณด๋ฅผ ๊ฐ€์ง€๊ณ  ์ž‡๋Š” ์„ผ์„œ ๋…ธ๋“œ๋“ค๋กœ ์†Œ๊ทธ๋ฃน์„ ํ˜•์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๊ฐ ๊ทธ๋ฃน ๋‚ด์˜ ๋…ธ๋“œ๋“ค๋กœ๋ถ€ํ„ฐ ์–ป์–ด์ง„ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ง€์› ๋ฒกํ„ฐ ํšŒ๊ท€ ์•Œ๊ณ ๋ฆฌ๋“ฌ์„ ์ˆ˜ํ–‰ํ•˜์—ฌ, ๊ฒฐ๊ณผ๋กœ์จ ์‚ฌ๋žŒ์˜ ์œ„์น˜ ์ถ”์ •์— ์ ์šฉ ํ•œ๋‹ค. PIR(Passive InfraRed)๊ณผ RSSI(Received signal Strength Indicator) ์„ผ์„œ ๋‘ ์ข…๋ฅ˜๋ฅผ ์‚ฌ์šฉํ•œ ์‹คํ—˜ ๊ฒฐ๊ณผ๋กœ๋ถ€ํ„ฐ ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๊ธฐ์กด์˜ ์ง€์› ๋ฒกํ„ฐ ํšŒ๊ท€ ์•Œ๊ณ ๋ฆฌ๋“ฌ๋ณด๋‹ค ๊ณ„์‚ฐ ์ˆ˜ํ–‰๊ณผ ์—์–ด๋‹ˆ ํšจ์œจ ๊ด€์ ์—์„œ ๋” ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค.DAPA/ADD/MEM
    corecore