25 research outputs found
Thermoelectric properties of pnictogen-substituted skutterudites with alkaline-earth fillers using first-principles calculations
First-principles calculations have been performed to investigate electronic band structures, vibrational characters, and related transport properties of pnictogen-substituted skutterudites filled with alkaline-earth elements (MxCo(4)A(6)B(6), where M = Ca, Sr, or Ba, A = Ge or Sn, B = Se or Te, and x = 0.5 or 1). Electronic transport properties related to thermoelectricity, including the Seebeck coefficient and the electrical conductivity, are computed by using the Boltzmann transport formalism within the constant-relaxation-time approximation. The results are compared against the corresponding properties of the unfilled pnictogen-substituted ternary skutterudites (CoA(1.5)B(1.5)) to identify the effects of filling to estimate the potential for thermoelectric applications. The changes in the ionic character of the interatomic bonding between the Group 14 (A) and Group 16 (B) elements, which was suspected to be a major scattering source in unfilled pnictogen-substituted ternary skutterudites, are probed by analyzing the projected density of states, the charge densities, and the Born effective charges, in an attempt to identify a potential path for improvement of the thermoelectric performance. Our computational results suggest that the analyzed performance of the filled pnictogen-substituted skutterudites should exhibit no significant improvement over that of the corresponding unfilled pnictogen-substituted ternary skutterudites, unless significant reduction in thermal conductivity is achieved by the rattling motion of the filler atoms. Published by AIP Publishing
Sensitivity of Thermoelectric Properties from the EPA Method and Its Variants on Variations in Phonon Frequencies
The electron-phonon coupling phenomenon is an important scattering source of charge carriers in thermoelectric materials. As the result, consideration of the scattering mechanism due to electron-phonon coupling is an essential part of the first-principles prediction methods for thermoelectric properties of materials, i.e., the Seebeck coefficient and electrical conductivity. However, a direct, high-resolution treatment of electron-phonon coupling in a realistic situation is too expensive for practical purposes, and approximation methods have been developed for the phenomena at a reasonable level of computational cost. The electron-phonon averaged (EPA) method and its variants have been recently introduced as such approximation methods. These methods comprise two major approximations. First, the electron-phonon coupling matrix elements, which are explicitly dependent on the momentum of charge carriers and that of scattering phonons, are approximated as a function of two energies only, i.e., the energy of the incoming charge carrier before scattering and that of the outgoing charge carrier after scattering. Second, the phonon frequencies in the formula of scattering rate are replaced with their averages in the Brillouin zone. Although these methods have achieved remarkable successes in predicting thermoelectric properties of materials, uncertainty introduced by these approximations and sensitivity of the results to variations of input parameters in these approximations have not been assessed completely. In this study, the uncertainty and sensitivity of thermoelectric properties, predicted with the EPA method and its variants, on variations in phonon frequencies are investigated. A thermoelectric p-type half-Heusler compound, HfCoSb, is used as an example. An empirical bootstrap method is employed to assess the impact of sampled phonon frequencies during the averaging process, whose results show that the impact of variations in phonon frequencies induces a minor but detectable change in predicted thermoelectric properties
Electronic, vibrational, and transport properties of pnictogen-substituted ternary skutterudites
First principles calculations are used to investigate electronic band structure and vibrational spectra of pnictogen-substituted ternary skutterudites. We compare the results with the prototypical binary composition CoSb 3 to identify the effects of substitutions on the Sb site, and evaluate the potential of ternary skutterudites for thermoelectric applications. Electronic transport coefficients are computed within the Boltzmann transport formalism assuming a constant relaxation time, using a methodology based on maximally localized Wannier function interpolation. Our results point to a large sensitivity of the electronic transport coefficients to carrier concentration and to scattering mechanisms associated with the enhanced polarity. The ionic character of the bonds is used to explain the detrimental effect on the thermoelectric properties. © 2012 American Physical Society
Quasiharmonic vibrational properties of tinisn from ab initio phonons
We report an ab initio study of vibrational and thermodynamic properties of TiNiSn, a half-Heusler alloy that has been investigated in the context of thermoelectrics, based on density functional theory and density functional perturbation theory. The quasiharmonic approximation, where the Helmholtz free energy obtained from phonons of multiple strained structures is fitted to a model equation of state, is employed to estimate thermodynamic properties. Good quantitative correspondence is achieved between experimental observations and our theoretical calculation for various thermodynamic quantities: lattice parameter, thermal expansion coefficient, and heat capacity. Estimates of lattice thermal conductivity are also provided by using a semianalytic model previously proposed in the literature. Though this yields good qualitative agreement, a more accurate ab initio approach that explicitly includes anharmonic interactions between atoms should be employed for quantitative predictions of thermal conductivity. © 2011 TMS
Contributions of the wall boundary layer to the formation of the counter-rotating vortex pair in transverse jets
Using high-resolution 3-D vortex simulations, this study seeks a mechanistic understanding of vorticity dynamics in transverse jets at a finite Reynolds number. A full no-slip boundary condition, rigorously formulated in terms of vorticity generation along the channel wall, captures unsteady interactions between the wall boundary layer and the jet - in particular, the separation of the wall boundary layer and its transport into the interior. For comparison, we also implement a reduced boundary condition that suppresses the separation of the wall boundary layer away from the jet nozzle. By contrasting results obtained with these two boundary conditions, we characterize near-field vortical structures formed as the wall boundary layer separates on the backside of the jet. Using various Eulerian and Lagrangian diagnostics, it is demonstrated that several near-wall vortical structures are formed as the wall boundary layer separates. The counter-rotating vortex pair, manifested by the presence of vortices aligned with the jet trajectory, is initiated closer to the jet exit. Moreover tornado-like wall-normal vortices originate from the separation of spanwise vorticity in the wall boundary layer at the side of the jet and from the entrainment of streamwise wall vortices in the recirculation zone on the lee side. These tornado-like vortices are absent in the case where separation is suppressed. Tornado-like vortices merge with counter-rotating vorticity originating in the jet shear layer, significantly increasing wall-normal circulation and causing deeper jet penetration into the crossflow stream. © 2011 Cambridge University Press
Technical and economic analysis of thermoelectric modules with macroporous thermoelectric elements
Limited heat transfer between thermoelectric modules and external heat reservoirs reduces the temperature difference imposed on thermoelectric materials, which reduces the power output of thermoelectric generators. In this study, the addition of macroscopic pores into thermoelectric materials is proposed as one way for resolving the issue. A semi-empirical model that relates the conductivities to the level of porosity is used for modeling the effect of porosity. The maximum power and other relevant parameters are compared between the generators with and without porosity at a realistic condition. An analytic model for evaluating economic performance is utilized to study the economic benefits of the implementation of porosity in thermoelectric elements. We demonstrate that the use of macroporous thermoelectric elements can effectively decrease the thermal conductance of the thermoelectric module, resulting in improved performance. The amount of raw materials needed to produce thermoeletric modules can be reduced simultaneously, resulting in economic benefits. (C) 2016 Elsevier Ltd. All rights reserved
Prediction of high thermoelectric potential in AMN<inf>2</inf> layered nitrides: Electronic structure, phonons, and anharmonic effects
Band structures, electronic transport coefficients, harmonic and anharmonic vibrational properties of novel layered nitrides have been studied to evaluate the potential for thermoelectric applications. Using first principles theoretical methods we predict that AMN<inf>2</inf> compounds with A = Ca, Sr, and Ba, and M = Ti, Zr, Hf may exhibit Seebeck coefficients in excess of 150 μV K-1 and good electrical conductivities. The phonon dispersions indicate the presence of low lying optic modes that can lead to low thermal conductivity. The analysis of the mode resolved Grüneisen parameter points to large anharmonicity. In addition, we show that the A-site substitution controls the degeneracies at the top of the valence band and the anisotropy of the Seebeck tensors. © The Royal Society of Chemistry 2015
Convergence characteristics of a domain decomposition scheme for approximation of quantum forces
Bohmian mechanics; Convergence; Domain decomposition; Quantum trajectorie
Achieving maximum power in thermoelectric generation with simple power electronics
constant-voltage algorithm; impedance matching; maximum-power-point tracking; open-circuit voltage algorithm; Thermoelectric
Power generation characteristics of a sandwich-type self-heating thermoelectric generator with spatially varying embedded heat source
Summary: Power generation characteristics of a sandwich-type thermoelectric generator in which the heat source is embedded into thermoelectric elements are investigated. Our previous work on a similar concept only considered a uniform heat source distribution inside thermoelectric elements. In this work, the effect of the spatial distribution of a heat source is examined. In particular, the effect of the concentration of heat source near the one end, that is, the hot end, is intensively studied as a potential means of improving the efficiency of the device. Although the effects of heat source concentration in impractical cases without heat transfer limitations on the cold side remain ambiguous, it become clear that heat source concentration indeed has positive effects in more realistic cases with finite heat transfer coefficients imposed on the cold side. Because of the relatively low efficiency of typical thermoelectric generation, a significant amount of heat must be dissipated from the cold end of the thermoelectric element. Greater heat source concentration near the hot end leads to more effective utilization of available heat source, reduces the amount of heat rejected at the cold end, and lowers the hot end temperature of the thermoelectric element. Overall, it is suggested that heat source concentration can be used as a method to achieve more efficient operation and better structural integrity of the system. © 2015 John Wiley & Sons, Ltd
