13 research outputs found

    ν•˜λΆ€ μ†Œν™”κΈ° 기관에 λŒ€ν•œ μ΄κ΄‘μžν˜„λ―Έκ²½ 연ꡬ 및 개발

    No full text
    DoctorTwo-photon microscopy (TPM) is a nonlinear fluorescence microscopic technique widely applied for various biological studies including neurobiology, cancer biology, and immunology since it provides three-dimensional (3D) cellular information within tissue based on endogenous and exogenous fluorophores. However, the lower gastrointestinal (GI) tract imaging still has been limited because of the location of the GI tissues which are deeply located inside the abdominal cavity. Also, these tissues are morpho-functionally complicated and sensitive tissue for maintaining immune homeostasis that makes the limitation of imaging. Moreover, the lower GI tract has numerous cells and tremendous amount of microorganism including bacteria and fungi, thus, it makes difficulty in controlling and assessing them for the longitudinal in vivo studies. Most previous studies for the lower GI tract imaging provided its superficial information by using transgenic mice or exogenous fluorescence markers in relatively short time window. Although autofluorescence (AF)-based imaging without using the fluorescence labeling could visualize all the cells within the tissue, it can be visualized either by having a sufficiently high excitation laser power or by having a slow imaging speed due to the weak AF level. Furthermore, TPM-based 3D cellular and structural information of GI tract have not been well elucidated in live condition. Hence, it is necessary to develop effective imaging method and tools for in vivo longitudinal studies of GI tract at cellular-level under expanded time window. In this study, the aim is to develop a novel two-photon (TP) imaging method which overcomes several limitations of AF-based imaging and side-viewing rotational endomicroscopic imaging probe system for longitudinal studies of the lower GI tract with an outstanding image contrast at cellular-level, in vivo. First, I described the applications of moxifloxacin, an FDA-approved fluoroquinolone antibiotic, as a biocompatible cell-labeling agent for TPM to overcome the weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. By using TPM with moxifloxacin, various cell lines, and animal tissues including the lower GI tissues were imaged, analyzed and compared with endogenous fluorescence with second harmonic generation (SHG) signal within them. In addition, Paneth cells (PCs), key mediators for intestinal homeostasis by secreting antimicrobial factors, were studied in the intact mouse small intestine by TPM with moxifloxacin, in vivo. Finally, side-viewing rotational TP endomicroscopic system was developed and improved to study the lower GI tract, especially mouse colon, in vivo. In conclusion, this dissertation suggests novel TP imaging method using moxifloxacin and side-viewing rotational endomicroscopic imaging probe system for longitudinal studies of the lower GI tissues at cellular-level, in vivo. In addition, TPM application to the lower GI tissues using moxifloxacin labeling could contribute to study the microenvironment of another internal organ via TP endomicroscopy.μ΄κ΄‘μžν˜„λ―Έκ²½ (two-photon microscopy, TPM) κΈ°μˆ μ€ 3차원 해상도λ₯Ό κ°–λŠ” ν˜•κ΄‘ ν˜„λ―Έκ²½ κΈ°μˆ λ‘œμ„œ 세포 및 μƒμ²΄μ‘°μ§μ˜ ꡬ쑰적인 정보λ₯Ό μ œκ³΅ν•  수 있기 λ•Œλ¬Έμ— 생물학, 생λͺ…곡학 및 κΈ°μ΄ˆμ˜ν•™ 연ꡬ λ“±μ—μ„œ λ‹€μ–‘ν•˜κ²Œ μ‚¬μš©λ˜κ³  μžˆλ‹€. μ΅œκ·Όμ—λŠ” μ΄κ΄‘μžν˜„λ―Έκ²½ κΈ°μˆ μ„ 기반으둜 ν•œ λ‡Œμ‘°μ§ λ‚΄ 신경ꡬ쑰 κ΄€μ°°, 쑰직 λ‚΄ μ•” λ°œμƒ/ν˜•μ„±κ³Όμ • λ˜λŠ” 세포 거동에 λŒ€ν•œ μ‹€μ‹œκ°„ κ΄€μ°° 등에 λŒ€ν•œ 세포 μˆ˜μ€€μœΌλ‘œμ˜ 연ꡬ 결과듀이 μ£Όλͺ©μ„ λ°›κ³  μžˆλ‹€. μ΅œκ·Όμ—λŠ” μ†Œν™”κΈ° κΈ°κ΄€ λ‚΄ 면역체계 및 κΈ°λŠ₯ 연ꡬλ₯Ό μœ„ν•΄μ„œλ„ μ΄κ΄‘μžν˜„λ―Έκ²½ 기술이 이용되고 μžˆλ‹€. κ·ΈλŸ¬λ‚˜ μ†Œμž₯쑰직 및 λŒ€μž₯쑰직과 같은 ν•˜λΆ€ μ†Œν™”κΈ° 기관에 λŒ€ν•œ μ˜μƒν™” 및 μ΄κ΄‘μžν˜„λ―Έκ²½ κΈ°μˆ μ„ 기반으둜 ν•˜λŠ” μ—°κ΅¬λŠ” μ†Œν™”κΈ° κΈ°κ΄€ 쑰직의 νŠΉμ„± λ•Œλ¬Έμ— μ‚΄μ•„μžˆλŠ” μƒνƒœμ—μ„œ μž₯μ‹œκ°„λ™μ•ˆ μ˜μƒν™”ν•˜λŠ”λ° μ œμ•½μ΄ λ§Žμ•„ 어렀움이 λ”°λ₯Έλ‹€. μ™œλƒν•˜λ©΄, ν•˜λΆ€ μ†Œν™”κΈ° 기관은 볡뢀 μ•ˆμͺ½μ— 깊이 μœ„μΉ˜ν•˜κ³  μžˆμ„ 뿐만 μ•„λ‹ˆλΌ μˆ˜λ§Žμ€ 세포듀은 λ¬Όλ‘  λ°•ν…Œλ¦¬μ•„ (bacteria), κ· μ’… (fungus)κ³Ό 같은 μˆ˜λ§Žμ€ 미생물듀이 κ³΅μƒν•˜κ³  있으며 μ†Œν™”, 흑수 및 λ©΄μ—­μ²΄κ³„μ˜ μœ μ§€ 등을 μœ„ν•΄μ„œ κΈ°λŠ₯적으둜 λ―Όκ°ν•˜κ³  ꡬ쑰적으둜 맀우 λ³΅μž‘ν•œ 쑰직이기 λ•Œλ¬Έμ΄λ‹€. λ”°λΌμ„œ ν•˜λΆ€ μ†Œν™”κΈ° 기관에 λŒ€ν•œ 연ꡬ듀은 주둜 λ³΅μž‘ν•˜κ³  μ–΄λ €μš΄ 과정듀을 톡해 μˆ˜ν–‰λ˜μ–΄ μ™”μœΌλ©° μ΄κ΄‘μžν˜„λ―Έκ²½ 기술 기반 연ꡬ듀은 주둜 쑰직 ν‘œλ©΄μ˜ 일뢀에 λŒ€ν•΄ 비ꡐ적 짧은 μ‹œκ°„ (~ μ΅œλŒ€ 8μ‹œκ°„) λ‚΄μ—μ„œ κ΄€μ°°λœ μ •λ³΄λ§Œμ„ μ œκ³΅ν•˜κ³  μžˆλ‹€. λ”°λΌμ„œ ν•˜λΆ€ μ†Œν™”κΈ° 기관에 λŒ€ν•œ 생λͺ…ν•™, λ©΄μ—­ν•™, μ•” λ°œμƒν•™ λ“±μ˜ μœ μ˜λ―Έν•œ κΈ°μ΄ˆμ—°κ΅¬λ₯Ό μœ„ν•΄μ„œλŠ” 쑰직이 μ‚΄μ•„μžˆλŠ” μƒνƒœμ—μ„œ 세포 μˆ˜μ€€μ˜ 정보λ₯Ό μ œκ³΅ν•˜λ©° 쑰직에 λŒ€ν•œ μž₯κΈ°κ°„μ˜ κ΄€μ°°κ³Ό 뢄석이 κ°€λŠ₯ν•œ μ΄κ΄‘μžν˜„λ―Έκ²½ μ˜μƒν™” 기술의 연ꡬ 및 개발이 ν•„μš”ν•˜λ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ”, ν•˜λΆ€ μ†Œν™”κΈ° 기관에 λŒ€ν•œ μ΄κ΄‘μžν˜„λ―Έκ²½ μ˜μƒν™” 기술의 연ꡬ 및 κ°œλ°œμ„ 닀루고 μžˆλ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” μ΄κ΄‘μžν˜„λ―Έκ²½ μ˜μƒν™” κΈ°μˆ μ— λŒ€ν•΄μ„œ, λ³Έ μ—°κ΅¬μ—μ„œ μ œμ•ˆν•œ λͺ©μ‹œν”Œλ‘μ‚¬μ‹  (moxifloxacin)의 쑰직 λ‚΄ 세포 μ—Όμƒ‰μ œλ‘œμ˜ ν™œμš©μ„ κ²€μ¦ν•˜μ˜€κ³  쑰직 λ‚΄ 세포 μ˜μƒν™”μ— λŒ€ν•œ 획기적인 μ„±λŠ₯ν–₯상을 λ³΄μ˜€μœΌλ©° 인체 λ‚΄ 세포 κ΄€μ°°μ˜ κ°€λŠ₯μ„±κΉŒμ§€ μ œμ‹œν•˜μ˜€λ‹€. ν•œνŽΈ, λͺ©μ‹œν”Œλ‘μ‚¬μ‹ μ„ μ΄μš©ν•œ μ΄κ΄‘μžν˜„λ―Έκ²½ μ˜μƒν™”λ₯Ό 톡해 ν•˜λΆ€ μ†Œν™”κΈ° κΈ°κ΄€ 쀑 ν•˜λ‚˜μΈ μ†Œμž₯쑰직에 λŒ€ν•΄μ„œ 점막 λ©΄μ—­ 및 항상성 μœ μ§€μ— 핡심적인 역할을 ν•˜λŠ” νŒŒλ„€μŠ€ 세포 (Paneth cell)λ₯Ό μ‚΄μ•„μžˆλŠ” λ§ˆμš°μŠ€μ—μ„œ μ˜μƒν™”ν•˜λŠ” 방법을 κ°œλ°œν•˜μ˜€λ‹€. λ³Έ μ—°κ΅¬μ—μ„œ κ°œλ°œν•œ 생체 λ‚΄ μ†Œμž₯쑰직의 νŒŒλ„€μŠ€ 세포에 λŒ€ν•œ μ˜μƒν™” κΈ°μˆ μ€ ν–₯ν›„ νŒŒλ„€μŠ€ μ„Έν¬μ˜ κΈ°λŠ₯뿐만 μ•„λ‹ˆλΌ κ΄€λ ¨ μ§ˆλ³‘μ—°κ΅¬, 면역연ꡬ 등에도 μ‘μš©λ  수 μžˆλ‹€. λ‚˜μ•„κ°€ ν•˜λΆ€ μ†Œν™”κΈ° κΈ°κ΄€ 쀑 ν•˜λ‚˜μΈ λŒ€μž₯쑰직에 λŒ€ν•œ 생체 λ‚΄ μ˜μƒν™” 및 μž₯κΈ°κ°„μ˜ 연ꡬλ₯Ό μœ„ν•˜μ—¬ ꡴절λ₯  λΆ„ν¬ν˜• (gradient index, GRIN) 렌즈λ₯Ό 기반으둜 ν•˜λŠ” μ†Œν˜• μ΄κ΄‘μž λ‚΄μ‹œν˜„λ―Έκ²½ (endomicroscopy) ν”„λ‘œλΈŒ μ‹œμŠ€ν…œμ„ κ°œλ°œν•˜μ˜€λ‹€. 그리고 μ΄κ΄‘μž λ‚΄μ‹œν˜„λ―Έκ²½μ˜ μ˜μƒμ„ ν–₯μƒν•˜κΈ° μœ„ν•΄μ„œ λ‚΄μ‹œκ²½ ν”„λ‘œλΈŒλ‘œ μ‚¬μš©λœ GRIN 렌즈의 수차문제λ₯Ό κ°œμ„ ν•˜μ˜€μœΌλ©° 이λ₯Ό 톡해 μ‚΄μ•„μžˆλŠ” 마우슀의 생체 λ‚΄ λŒ€μž₯쑰직을 ν‘œν”Ό (epithelium)λΆ€ν„° μ†Œλ‚­μ„  (gland; crypt) κ΅¬μ‘°κΉŒμ§€ λ‚΄μ‹œκ²½μ μΈ 방법을 톡해 처음으둜 μ˜μƒν™”ν•˜λŠ”λ° μ„±κ³΅ν•˜μ˜€λ‹€. λ³Έ μ—°κ΅¬μ—μ„œ κ°œλ°œν•œ GRIN 렌즈 기반의 μ΄κ΄‘μž λ‚΄μ‹œν˜„λ―Έκ²½ ν”„λ‘œλΈŒ μ‹œμŠ€ν…œμ€ ν–₯ν›„ λŒ€μž₯쑰직의 ꡬ쑰 κ΄€μ°°λΏλ§Œ μ•„λ‹ˆλΌ λŒ€μž₯쑰직 κ΄€λ ¨ μ§ˆλ³‘λͺ¨λΈμ˜ μž₯기적인 κ΄€μ°° 및 κΈ°μ΄ˆμ—°κ΅¬μ— ν™œμš©λ  수 μžˆμ„ 것이닀. λ³Έ λ…Όλ¬Έμ—μ„œ 닀루고 μžˆλŠ” 각 ν•˜μœ„μ—°κ΅¬λ“€μ— λŒ€ν•œ λ‚΄μš©μ€ λ‹€μŒμ˜ μš”μ•½μ— κ°„λž΅νžˆ κΈ°μˆ λ˜μ–΄ μžˆλ‹€. 결둠적으둜, λ³Έ μ—°κ΅¬μ—μ„œλŠ” ν•˜λΆ€ μ†Œν™”κΈ° 기관에 λŒ€ν•œ μ΄κ΄‘μžν˜„λ―Έκ²½ μ—°κ΅¬μ˜ μ˜μƒν™” 기술과 μƒˆλ‘œμš΄ μ‹œμŠ€ν…œ 개발 λ‚΄μš©μ„ 닀루고 있으며 ν•˜λΆ€ μ†Œν™”κΈ° 기관에 λŒ€ν•œ 생체 λ‚΄ μ˜μƒν™” 및 연ꡬ가 κ°€λŠ₯ν•˜λ‹€λŠ” 것을 κ²€μ¦ν•˜μ˜€λ‹€. λ‚˜μ•„κ°€ λ³Έ μ—°κ΅¬μ—μ„œ κ°œλ°œν•œ 기술 및 μ‹œμŠ€ν…œμ΄ ν•˜λΆ€ μ†Œν™”κΈ° κΈ°κ΄€λΏλ§Œ μ•„λ‹ˆλΌ λ‹€λ₯Έ μ‘°μ§λ“€μ˜ 생체 λ‚΄ 연ꡬ에도 μ‘μš©λ  κ²ƒμœΌλ‘œ μ „λ§ν•˜λ©° μ΄κ΄‘μžν˜„λ―Έκ²½ μ˜μƒκΈ°μˆ μ— λŒ€ν•œ μž„μƒμœΌλ‘œμ˜ ν™œμš©κ°€λŠ₯성을 μ œμ‹œν•œλ‹€λŠ” μ μ—μ„œλ„ κΈ°μ—¬ν•˜μ˜€λ‹€κ³  λ³Ό 수 μžˆλ‹€
    corecore