6 research outputs found

    PKC phosphorylation regulates mGluR5 trafficking by enhancing binding of Siah-1A.

    Get PDF
    Glutamate is the major excitatory neurotransmitter in the mammalian CNS and acts on both ionotropic and metabotropic glutamate receptors (mGluRs). The mGluRs are widely distributed in the CNS and modulate a variety of neuronal processes, including neurotransmitter release and ion channel function. In hippocampus and cortex, mGluR5 is highly expressed and plays an important role in the regulation of synaptic plasticity. Calmodulin (CaM) binding dynamically regulates mGluR5 surface expression; however, the mechanisms linking CaM to mGluR5 trafficking are not clear. Recent studies showed that CaM binding to mGluR7 regulates its trafficking in a phosphorylation-dependent manner by disrupting the binding of protein interacting with C kinase 1. The E3 ligase seven in absentia homolog (Siah)-1A binds to mGluR5 and competes with CaM binding, making it an intriguing molecule to regulate phosphorylation-dependent trafficking of mGluR5. In the present study, we find that CaM competes with Siah-1A for mGluR5 binding in a phosphorylation-dependent manner in rat hippocampal neurons. Specifically, phosphorylation of mGluR5 S901 favors Siah-1A binding by displacing CaM. We identified critical residues regulating Siah-1A binding to mGluR5 and showed that binding is essential for the Siah-1A effects on mGluR5 trafficking. Siah-1A binding decreases mGluR5 surface expression and increases endosomal trafficking and lysosomal degradation of mGluR5. Thus CaM-regulated Siah-1A binding to mGluR5 dynamically regulates mGluR5 trafficking. These findings support a conserved role for CaM in regulating mGluR trafficking by PKC-dependent regulation of receptor-binding proteinsope

    mGluR5 in the nucleus accumbens is critical for promoting resilience to chronic stress

    No full text
    Resilience to aversive events has a central role in determining whether stress leads to the development of depression. mGluR5 has been implicated in the pathophysiology of depression, but the effect of mGluR5 activity on stress resilience remains unexplored. We found that mGluR5(-/-) (also known as Grm5(-/-)) mice displayed more depression-like behaviors (for example, learned helplessness, social withdrawal and anhedonia) than control mice following exposure to various stressful stimuli. Lentiviral 'rescue' of mGluR5 in the nucleus accumbens (NAc) decreased these depression-like behaviors in mGluR5(-/-) mice. In the NAc, ฮ”FosB, whose induction promotes stress resilience, failed to be upregulated by stress in mGluR5(-/-) mice. Notably, targeted pharmacological activation of mGluR5 in the NAc increased ฮ”FosB expression. Our findings point to an essential role for mGluR5 in promoting stress resilience and suggest that a defect in mGluR5-mediated signaling in the NAc may represent an endophenotype for stress-induced depression.ope

    GPR30 mediates anorectic estrogen-induced STAT3 signaling in the hypothalamus

    No full text
    OBJECTIVE: Estrogen plays an important role in the control of energy balance in the hypothalamus. Leptin-independent STAT3 activation (i.e., tyrosine(705)-phosphorylation of STAT3, pSTAT3) in the hypothalamus is hypothesized as the primary mechanism of the estrogen-induced anorexic response. However, the type of estrogen receptor that mediates this regulation is unknown. We investigated the role of the G protein-coupled receptor 30 (GPR30) in estradiol (E2)-induced STAT3 activation in the hypothalamus. MATERIALS/METHODS: Regulation of STAT3 activation by E2, G-1, a specific agonist of GPR30 and G-15, a specific antagonist of GPR30 was analyzed in vitro and in vivo. Effect of GPR30 activation on eating behavior was analyzed in vivo. RESULTS: E2 stimulated pSTAT3 in cells expressing GPR30, but not expressing estrogen receptor ERฮฑ and ERฮฒ. G-1 induced pSTAT3, and G-15 inhibited E2-induced pSTAT3 in primary cultures of hypothalamic neurons. A cerebroventricular injection of G-1 increased pSTAT3 in the arcuate nucleus of mice, which was associated with a decrease in food intake and body weight gain. CONCLUSIONS: These results suggest that GPR30 is the estrogen receptor that mediates the anorectic effect of estrogen through the STAT3 pathway in the hypothalamus.ope

    An Odorant-Binding Protein Required for Suppression of Sweet Taste by Bitter Chemicals

    No full text
    Animals often must decide whether or not to consume a diet that contains competing attractive and aversive compounds. Here, using the fruit fly, Drosophila melanogaster, we describe a mechanism that influences this decision. Addition of bitter compounds to sucrose suppressed feeding behavior, and this inhibition depended on an odorant-binding protein (OBP) termed OBP49a. In wild-type flies, bitter compounds suppressed sucrose-induced action potentials, and the inhibition was impaired in Obp49a mutants. However, loss of OBP49a did not affect action potentials in sugar- or bitter-activated gustatory receptor neurons (GRNs) when the GRNs were presented with just one type of tastant. OBP49a was expressed in accessory cells and acted non-cell-autonomously to attenuate nerve firings in sugar-activated GRNs when bitter compounds were combined with sucrose. These findings demonstrate an unexpected role for an OBP in taste and identify a molecular player involved in the integration of opposing attractive and aversive gustatory inputs.ope

    Increased GABA-A Receptor Binding and Reduced Connectivity at the Motor Cortex in Children with Hemiplegic Cerebral Palsy: A Multimodal Investigation Using 18F-Fluoroflumazenil PET, Immunohistochemistry, and MR Imaging

    No full text
    ฮณ-aminobutyric acid (GABA)-A receptor-mediated neural transmission is important to promote practice-dependent plasticity after brain injury. This study investigated alterations in GABA-A receptor binding and functional and anatomic connectivity within the motor cortex in children with cerebral palsy (CP). METHODS: We conducted (18)F-fluoroflumazenil PET on children with hemiplegic CP to investigate whether in vivo GABA-A receptor binding is altered in the ipsilateral or contralateral hemisphere of the lesion site. To evaluate changes in the GABA-A receptor subunit after prenatal brain injury, we performed GABA-A receptor immunohistochemistry using rat pups with a diffuse hypoxic ischemic insult. We also performed diffusion tensor MR imaging and resting-state functional MR imaging on the same children with hemiplegic CP to investigate alterations in anatomic and functional connectivity at the motor cortex with increased GABA-A receptor binding. RESULTS: In children with hemiplegic CP, the (18)F-fluoroflumazenil binding potential was increased within the ipsilateral motor cortex. GABA-A receptors with the ฮฑ1 subunit were highly expressed exclusively within cortical layers III, IV, and VI of the motor cortex in rat pups. The motor cortex with increased GABA-A receptor binding in children with hemiplegic CP had reduced thalamocortical and corticocortical connectivity, which might be linked to increased GABA-A receptor distribution in cortical layers in rats. CONCLUSION: Increased expression of the GABA-A receptor ฮฑ1 subunit within the ipsilateral motor cortex may be an important adaptive mechanism after prenatal brain injury in children with CP but may be associated with improper functional connectivity after birth and have adverse effects on the development of motor plasticity.ope
    corecore